Return to search

'n Stochastiese besluitnemingsmodel vir tafeldruifproduksie toegepas in die Weskaap

Thesis (MComm)--Stellenbosch University, 2013. / ENGLISH ABSTRACT: Decision making in a complex environment is not an easy step as there are
uncertainty variables that cannot be foreseen. This causes decision makers to
use tools that can help and support difficult decision making in such a complex
environment. These tools can be different variations of which a model that
imitates the environment or system are the most commonly used. The systems
approach is normally used to describe a complex environment. Such an
environment consists of elements that are linked together to reach a goal or
perform a function. A model is thus used to simplify the reality and to imitate and
simulate the system as close as possible. Models are built in different forms of
which mathematical and physical models are the main types. Physical models
imitates the system through physical measures whereas mathematical models
make use of equations that are interdependent. The probability that a single
simulation of a mathematical model will represent reality is very rare. To
overcome this problem a stochastic approach can be followed where a series of
possible outcomes can be simulated for a set of variables. Hereby a probability
distribution can be generated for a specific outcome. In this study a stochastic
simulation model is used as a decision support tool for table grape producers
where the impact of different scenario’s can be evaluated. The model is
developed from an existing model for long term crops and adjusted for table
grape production. Table grape producers and policy makers can use the model
for decision making and scenario planning. / AFRIKAANSE OPSOMMING: Besluitneming in ‘n komplekse omgewing is gewoontlik nie ‘n eenvoudige stap
nie aangesien daar veranderlikes is waarvoor nie voorsien kan word nie. Dit
bring mee dat besluitnemers na hulpmiddels soek om moeilike besluite in so ‘n
komplekse omgewing te ondersteun. Hulpmiddels kan verskeie vorme aanneem
waarvan ‘n model wat die omgewing of stelsel naboots die mees algemene
metode is. Die stelselsbenadering word in die algemeen gebruik om ‘n
komplekse omgewing voor te stel. So ‘n omgewing bestaan normaalweg uit
verskeie elemente wat aan mekaar gekoppel is om ‘n doel te bereik of ‘n funksie
te verrig. ‘n Model word dus gebruik om die werklikheid te vereenvoudig en om
die stelsel van belang so na as moontlik na te boots of te simuleer. Modelle kan
verskeie vorme aanneem met wiskundige en fisiese modelle wat van die hoof
tipes is. Fisiese modelle poog om die stelsel na te boots met fisiese maatstawwe,
terwyl wiskundige modelle die stelsel naboots deur wiskundige vergelykings wat
interafhanklikheid in ag neem. Die waarskynlikheid dat ‘n enkele simulasie van ‘n
wiskundige model die werklikheid sal verteenwoordig is laag. Om die probleem te
oorkom kan ‘n stochastiese benadering gevolg word waar ‘n reeks van uitkomste
gegenereer word vir ‘n stel veranderlikes. Sodoende kan ‘n
waarskynlikheidsverdeling gegenereer word vir spesifieke uitkomste. In hierdie
studie is gebruik gemaak van ‘n stochastiese simulasiemodel om as
besluitnemingshulpmiddel te dien vir tafeldruifprodusente waar die invloed
bepaal kan word wat verskeie scenario’s op die prestasieparameters het. Die
model is opgestel vanaf ‘n bestaande model vir langtermyngewasse en
aangepas vir tafeldruifproduksie. Hierdeur kan tafeldruifprodusente en
beleidmakers gebruik maak van die model om as hulpmiddel te dien tydens
beoogde besluitneming en scenariobeplanning.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:sun/oai:scholar.sun.ac.za:10019.1/79879
Date03 1900
CreatorsJansen van Vuuren, Barend Gerhardus
ContributorsLombard, J. P., Stellenbosch University. Faculty of AgriSciences. Dept. of Agricultural Economics.
PublisherStellenbosch : Stellenbosch University
Source SetsSouth African National ETD Portal
Languageafr_ZA
Detected LanguageUnknown
TypeThesis
Format111 p. : ill.
RightsStellenbosch University

Page generated in 0.0021 seconds