Return to search

Semi-supervised learning with graphs methods using signal processing = Métodos de aprendizado semi-supervisionado com grafos usando processamento de sinais / Métodos de aprendizado semi-supervisionado com grafos usando processamento de sinais

Orientador: Siome Klein Goldenstein / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Computação / Made available in DSpace on 2018-08-25T19:49:49Z (GMT). No. of bitstreams: 1
ChavezEscalante_DiegoAlonso_M.pdf: 1954210 bytes, checksum: c9a77d2f0545d5517700c34dd6cf3324 (MD5)
Previous issue date: 2014 / Resumo: No aprendizado de máquina, os problemas de classificação de padrões eram tradicionalmente abordados por algoritmos de aprendizado supervisionado que utilizam apenas dados rotulados para treinar-se. Entretanto, os dados rotulados são realmente difíceis de coletar em muitos domínios de problemas, enquanto os dados não rotulados são geralmente mais fáceis de recolher. Também em aprendizado de máquina só o aprendizado não supervisionado é capaz de aprender a topologia e propriedades de um conjunto de dados não rotulados. Portanto, a fim de conseguir uma classificação utilizando o conhecimento a partir de dados rotulados e não rotulados, é necessário o uso de conceitos de aprendizado supervisionado tanto como do não supervisionado. Este tipo de aprendizagem é chamado de aprendizado semi-supervisionado, que declara ter construído melhores classificadores que o tradicional aprendizado supervisionado em algumas condições especificas, porque não só aprende dos dados rotulados, mas também das propriedades naturais dos dados não rotulados como por exemplo a distribuição espacial deles. O aprendizado semi-supervisionado apresenta uma ampla coleção de métodos e técnicas para classificação, e um dos mais interessantes e o aprendizado semi-supervisionado baseado em grafos, o qual modela o problema da classificação semi-supervisionada utilizando a teoria dos grafos. Mas um problema que surge a partir dessa técnica é o custo para treinar conjuntos com grandes quantidades de dados, de modo que o desenvolvimento de algoritmos escaláveis e eficientes de aprendizado semi-supervisionado baseado em grafos e um problema muito interessante e prometedor para lidar com ele. Desta pesquisa foram desenvolvidos dois algoritmos, um para a construção do grafo usando redes neurais não supervisionadas e outro para a regularização do grafo usando processamento de sinais em grafos, especificamente usando filtros de resposta finita sobre o grafo. As duas soluções mostraram resultados comparáveis com os da literatura / Abstract: In machine learning, classification problems were traditionally addressed by supervised learning algorithms, which only use labeled data for training. However, labeled data in many problem domains are really hard to collect, while unlabeled data are usually easy to collect. Also, in machine learning, only unsupervised learning is capable to learn the topology and properties of a set of unlabeled data. In order to do a classification using knowledge from labeled and unlabeled data, it is necessary to use concepts from both supervised and unsupervised learning. This type of learning is called semi-supervised learning, which has claimed to build better classifiers than the traditional supervised learning in some specific conditions, because it does not only learn from the labeled data, but also from the natural properties of unlabeled data as for example spatial distribution. Semi-supervised learning presents a broad collection of methods and techniques for classification. Among them there is graph based semi-supervised learning, which model the problem of semi-supervised classification using graph theory. One problem that arises from this technique is the cost for training large data sets, so the development of scalable and efficient algorithms for graph based semi-supervised learning is a interesting and promising problem to deal with. From this research we developed two algorithms, one for graph construction using unsupervised neural networks; and other for graph regularization using graph signal processing theory, more specifically using FIR filters over a graph. Both solutions showed comparable performance to other literature methods in terms of accuracy / Mestrado / Ciência da Computação / Mestre em Ciência da Computação

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.unicamp.br:REPOSIP/275521
Date25 August 2018
CreatorsChávez Escalante, Diego Alonso, 1988-
ContributorsUNIVERSIDADE ESTADUAL DE CAMPINAS, Goldenstein, Siome Klein, 1972-, Wainer, Jacques, Lopes, Renato da Rocha
Publisher[s.n.], Universidade Estadual de Campinas. Instituto de Computação, Programa de Pós-Graduação em Ciência da Computação
Source SetsIBICT Brazilian ETDs
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Format91 p. : il., application/octet-stream
Sourcereponame:Repositório Institucional da Unicamp, instname:Universidade Estadual de Campinas, instacron:UNICAMP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0031 seconds