Za posledné roky je zaznamenaný nárast prác zahrňujúcich komplexnú detekciu malvéru. Pre potreby zachytenia správania je často vhodné pouziť formát grafov. To je prípad antivírusového programu Avast, ktorého behaviorálny štít deteguje škodlivé správanie a ukladá ich vo forme grafov. Keďže sa jedná o proprietárne riešenie a Avast antivirus pracuje s vlastnou sadou charakterizovaného správania bolo nutné navrhnúť vlastnú metódu detekcie, ktorá bude postavená nad týmito grafmi správania. Táto práca analyzuje grafy správania škodlivého softvéru zachytené behavioralnym štítom antivírusového programu Avast pre proces hlbšej detekcie škodlivého softvéru. Detekcia škodlivého správania sa začína analýzou a abstrakciou vzorcov z grafu správania. Izolované vzory môžu efektívnejšie identifikovať dynamicky sa meniaci malware. Grafy správania sú uložené v databáze grafov Neo4j a každý deň sú zachytené tisíce z nich. Cieľom tejto práce bolo navrhnúť algoritmus na identifikáciu správania škodlivého softvéru s dôrazom na rýchlosť skenovania a jasnosť identifikovaných vzorcov správania. Identifikácia škodlivého správania spočíva v nájdení najdôležitejších vlastností natrénovaných klasifikátorov a následnej extrakcie podgrafu pozostávajúceho iba z týchto dôležitých vlastností uzlov a vzťahov medzi nimi. Následne je navrhnuté pravidlo pre hodnotenie extrahovaného podgrafu. Diplomová práca prebehla v spolupráci so spoločnosťou Avast Software s.r.o.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:442388 |
Date | January 2021 |
Creators | Varga, Adam |
Contributors | Burget, Radim, Hajný, Jan |
Publisher | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií |
Source Sets | Czech ETDs |
Language | English |
Detected Language | Unknown |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0017 seconds