Return to search

Graph Learning as a Basis for Image Segmentation

Graph signal processing is a field concerning theprocessing of graphs with data associated to their vertices, oftenin the purpose of modeling networks. One area of this fieldthat has been under research in recent years is the developmentof frameworks for learning graph topologies from such data.This may be useful in situations where one wants to representa phenomenon with a graph, but where an obvious topologyis not available. The aim of this project was to evaluate theusefulness of one such proposed learning framework in thecontext of image segmentation. The method used for achievingthis consisted in constructing graph representations of imagesfrom said framework, and clustering their vertices with anestablished graph-based segmentation algorithm. The resultsdemonstrate that this approach may well be useful, although theimplementation used in the project carried out segmentationssignificantly slower than state of the art methods. A numberof possible improvements to be made regarding this aspect arehowever pointed out and may be subject for future work. / Grafsignalbehandling är ett ämnesområde vars syfte är att behandla grafer med data associerat till deras noder, ofta inom nätverksmodelleringen. Inom detta område pågår aktiv forskning med att utveckla tekniker för att konstruera graftopologier från sådana data. Dessa tekniker kan vara användbara när man vill representera ett fenomen med grafer, men då uppenbara grafstrukturer inte finns tillgängliga. Syftet med detta projekt var att utvärdera användbarheten hos en sådan teknik när den appliceras inom bildsegmentering. Metoden som användes bestod i att konstruera grafrepresentationer av bilder med hjälp av denna teknik, för att sedan behandla dessa med en etablerad, grafbaserad segmenteringsalgoritm. Resultaten påvisar att detta tillvägagångssätt under rätt förutsättningar kan producera tillfredsställande bildsegmenteringar. Dock är implementeringen som nyttjats i projektet betydligt långsammare än de metoder som vanligen används inom området. Ett antal förslag till prestandaförbättring utpekas, och kan vara föremål för framtida studier. / Kandidatexjobb i elektroteknik 2020, KTH, Stockholm

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-295622
Date January 2020
CreatorsLundbeck, Kim, Eriksson, Wille
PublisherKTH, Skolan för elektroteknik och datavetenskap (EECS)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-EECS-EX ; 2020:160

Page generated in 0.0023 seconds