Return to search

Impacto da geração de grafos na classificação semissupervisionada / Impact of graph construction on semi-supervised classification

Uma variedade de algoritmos de aprendizado semissupervisionado baseado em grafos e métodos de geração de grafos foram propostos pela comunidade científica nos últimos anos. Apesar de seu aparente sucesso empírico, a área de aprendizado semissupervisionado carece de um estudo empírico detalhado que avalie o impacto da geração de grafos na classificação semissupervisionada. Neste trabalho, é provido tal estudo empírico. Para tanto, combinam-se uma variedade de métodos de geração de grafos com uma variedade de algoritmos de aprendizado semissupervisionado baseado em grafos para compará-los empiricamente em seis bases de dados amplamente usadas na literatura de aprendizado semissupervisionado. Os algoritmos são avaliados em tarefas de classificação de dígitos, caracteres, texto, imagens e de distribuições gaussianas. A avaliação experimental proposta neste trabalho é subdividida em quatro partes: (1) análise de melhor caso; (2) avaliação da estabilidade dos classificadores semissupervisionados; (3) avaliação do impacto da geração de grafos na classificação semissupervisionada; (4) avaliação da influência dos parâmetros de regularização no desempenho de classificação dos classificadores semissupervisionados. Na análise de melhor caso, avaliam-se as melhores taxas de erro de cada algoritmo semissupervisionado combinado com os métodos de geração de grafos usando uma variedade de valores para o parâmetro de esparsificação, o qual está relacionado ao número de vizinhos de cada exemplo de treinamento. Na avaliação da estabilidade dos classificadores, avalia-se a estabilidade dos classificadores semissupervisionados combinados com os métodos de geração de grafos usando uma variedade de valores para o parâmetro de esparsificação. Para tanto, fixam-se os valores dos parâmetros de regularização (quando existirem) que geraram os melhores resultados na análise de melhor caso. Na avaliação do impacto da geração de grafos, avaliam-se os métodos de geração de grafos combinados com os algoritmos de aprendizado semissupervisionado usando uma variedade de valores para o parâmetro de esparsificação. Assim como na avaliação da estabilidade dos classificadores, para esta avaliação, fixam-se os valores dos parâmetros de regularização (quando existirem) que geraram os melhores resultados na análise de melhor caso. Na avaliação da influência dos parâmetros de regularização na classificação semissupervisionada, avaliam-se as superfícies de erro geradas pelos classificadores semissupervisionados em cada grafo e cada base de dados. Para tanto, fixam-se os grafos que geraram os melhores resultados na análise de melhor caso e variam-se os valores dos parâmetros de regularização. O intuito destes experimentos é avaliar o balanceamento entre desempenho de classificação e estabilidade dos algoritmos de aprendizado semissupervisionado baseado em grafos numa variedade de métodos de geração de grafos e valores de parâmetros (de esparsificação e de regularização, se houver). A partir dos resultados obtidos, pode-se concluir que o grafo k- vizinhos mais próximos mútuo (mutKNN) pode ser a melhor opção dentre os métodos de geração de grafos de adjacência, enquanto que o kernel RBF pode ser a melhor opção dentre os métodos de geração de matrizes ponderadas. Em adição, o grafo mutKNN tende a gerar superfícies de erro que são mais suaves que aquelas geradas pelos outros métodos de geração de grafos de adjacência. Entretanto, o grafo mutKNN é instável para valores relativamente pequenos de k. Os resultados obtidos neste trabalho indicam que o desempenho de classificação dos algoritmos semissupervisionados baseados em grafos é fortemente influenciado pela configuração de parâmetros. Poucos padrões evidentes foram encontrados para auxiliar o processo de seleção de parâmetros. As consequências dessa instabilidade são discutidas neste trabalho em termos de pesquisa e aplicações práticas / A variety of graph-based semi-supervised learning algorithms have been proposed by the research community in the last few years. Despite its apparent empirical success, the field of semi-supervised learning lacks a detailed empirical study that evaluates the influence of graph construction on semisupervised learning. In this work we provide such an empirical study. For such purpose, we combine a variety of graph construction methods with a variety of graph-based semi-supervised learning algorithms in order to empirically compare them in six benchmark data sets widely used in the semi-supervised learning literature. The algorithms are evaluated in tasks about digit, character, text, and image classification as well as classification of gaussian distributions. The experimental evaluation proposed in this work is subdivided into four parts: (1) best case analysis; (2) evaluation of classifiers stability; (3) evaluation of the influence of graph construction on semi-supervised learning; (4) evaluation of the influence of regularization parameters on the classification performance of semi-supervised learning algorithms. In the best case analysis, we evaluate the lowest error rates of each semi-supervised learning algorithm combined with the graph construction methods using a variety of sparsification parameter values. Such parameter is associated with the number of neighbors of each training example. In the evaluation of classifiers stability, we evaluate the stability of the semi-supervised learning algorithms combined with the graph construction methods using a variety of sparsification parameter values. For such purpose, we fixed the regularization parameter values (if any) with the values that achieved the best result in the best case analysis. In the evaluation of the influence of graph construction, we evaluate the graph construction methods combined with the semi-supervised learning algorithms using a variety of sparsification parameter values. In this analysis, as occurred in the evaluation of classifiers stability, we fixed the regularization parameter values (if any) with the values that achieved the best result in the best case analysis. In the evaluation of the influence of regularization parameters on the classification performance of semi-supervised learning algorithms, we evaluate the error surfaces generated by the semi-supervised classifiers in each graph and data set. For such purpose, we fixed the graphs that achieved the best results in the best case analysis and varied the regularization parameters values. The intention of our experiments is evaluating the trade-off between classification performance and stability of the graphbased semi-supervised learning algorithms in a variety of graph construction methods as well as parameter values (sparsification and regularization, if applicable). From the obtained results, we conclude that the mutual k-nearest neighbors (mutKNN) graph may be the best choice for adjacency graph construction while the RBF kernel may be the best choice for weighted matrix generation. In addition, mutKNN tends to generate error surfaces that are smoother than those generated by other adjacency graph construction methods. However, mutKNN is unstable for relatively small values of k. Our results indicate that the classification performance of the graph-based semi-supervised learning algorithms are heavily influenced by parameter setting. We found just a few evident patterns that could help parameter selection. The consequences of such instability are discussed in this work in research and practice

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-08012014-154452
Date18 July 2013
CreatorsSousa, Celso André Rodrigues de
ContributorsLopes, Alneu de Andrade
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguagePortuguese
TypeDissertação de Mestrado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0031 seconds