Return to search

Advanced Memory Data Structures for Scalable Event Trace Analysis

The thesis presents a contribution to the analysis and visualization of computational performance based on event traces with a particular focus on parallel programs and High Performance Computing (HPC). Event traces contain detailed information about specified incidents (events) during run-time of programs and allow minute investigation of dynamic program behavior, various performance metrics, and possible causes of performance flaws. Due to long running and highly parallel programs and very fine detail resolutions, event traces can accumulate huge amounts of data which become a challenge for interactive as well as automatic analysis and visualization tools. The thesis proposes a method of exploiting redundancy in the event traces in order to reduce the memory requirements and the computational complexity of event trace analysis. The sources of redundancy are repeated segments of the original program, either through iterative or recursive algorithms or through SPMD-style parallel programs, which produce equal or similar repeated event sequences. The data reduction technique is based on the novel Complete Call Graph (CCG) data structure which allows domain specific data compression for event traces in a combination of lossless and lossy methods. All deviations due to lossy data compression can be controlled by constant bounds. The compression of the CCG data structure is incorporated in the construction process, such that at no point substantial uncompressed parts have to be stored. Experiments with real-world example traces reveal the potential for very high data compression. The results range from factors of 3 to 15 for small scale compression with minimum deviation of the data to factors > 100 for large scale compression with moderate deviation. Based on the CCG data structure, new algorithms for the most common evaluation and analysis methods for event traces are presented, which require no explicit decompression. By avoiding repeated evaluation of formerly redundant event sequences, the computational effort of the new algorithms can be reduced in the same extent as memory consumption. The thesis includes a comprehensive discussion of the state-of-the-art and related work, a detailed presentation of the design of the CCG data structure, an elaborate description of algorithms for construction, compression, and analysis of CCGs, and an extensive experimental validation of all components. / Diese Dissertation stellt einen neuartigen Ansatz für die Analyse und Visualisierung der Berechnungs-Performance vor, der auf dem Ereignis-Tracing basiert und insbesondere auf parallele Programme und das Hochleistungsrechnen (High Performance Computing, HPC) zugeschnitten ist. Ereignis-Traces (Ereignis-Spuren) enthalten detaillierte Informationen über spezifizierte Ereignisse während der Laufzeit eines Programms und erlauben eine sehr genaue Untersuchung des dynamischen Verhaltens, verschiedener Performance-Metriken und potentieller Performance-Probleme. Aufgrund lang laufender und hoch paralleler Anwendungen und dem hohen Detailgrad kann das Ereignis-Tracing sehr große Datenmengen produzieren. Diese stellen ihrerseits eine Herausforderung für interaktive und automatische Analyse- und Visualisierungswerkzeuge dar. Die vorliegende Arbeit präsentiert eine Methode, die Redundanzen in den Ereignis-Traces ausnutzt, um sowohl die Speicheranforderungen als auch die Laufzeitkomplexität der Trace-Analyse zu reduzieren. Die Ursachen für Redundanzen sind wiederholt ausgeführte Programmabschnitte, entweder durch iterative oder rekursive Algorithmen oder durch SPMD-Parallelisierung, die gleiche oder ähnliche Ereignis-Sequenzen erzeugen. Die Datenreduktion basiert auf der neuartigen Datenstruktur der "Vollständigen Aufruf-Graphen" (Complete Call Graph, CCG) und erlaubt eine Kombination von verlustfreier und verlustbehafteter Datenkompression. Dabei können konstante Grenzen für alle Abweichungen durch verlustbehaftete Kompression vorgegeben werden. Die Datenkompression ist in den Aufbau der Datenstruktur integriert, so dass keine umfangreichen unkomprimierten Teile vor der Kompression im Hauptspeicher gehalten werden müssen. Das enorme Kompressionsvermögen des neuen Ansatzes wird anhand einer Reihe von Beispielen aus realen Anwendungsszenarien nachgewiesen. Die dabei erzielten Resultate reichen von Kompressionsfaktoren von 3 bis 5 mit nur minimalen Abweichungen aufgrund der verlustbehafteten Kompression bis zu Faktoren > 100 für hochgradige Kompression. Basierend auf der CCG_Datenstruktur werden außerdem neue Auswertungs- und Analyseverfahren für Ereignis-Traces vorgestellt, die ohne explizite Dekompression auskommen. Damit kann die Laufzeitkomplexität der Analyse im selben Maß gesenkt werden wie der Hauptspeicherbedarf, indem komprimierte Ereignis-Sequenzen nicht mehrmals analysiert werden. Die vorliegende Dissertation enthält eine ausführliche Vorstellung des Stands der Technik und verwandter Arbeiten in diesem Bereich, eine detaillierte Herleitung der neu eingeführten Daten-strukturen, der Konstruktions-, Kompressions- und Analysealgorithmen sowie eine umfangreiche experimentelle Auswertung und Validierung aller Bestandteile.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:23611
Date16 December 2008
CreatorsKnüpfer, Andreas
ContributorsNagel, Wolfgang E., Lehner, Wolfgang, Kranzlmüller, Dieter
PublisherTechnische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0027 seconds