Return to search

Processing and properties of multifunctional polylactide/graphene composites

This thesis aims to utilize graphene nanoplatelets (GNPs) in biobased and biodegradable thermoplastic polylactide (PLA) matrix for improved properties and multifunctionalities. A comprehensive comparative study was carried out on the effect of the addition of GNPs with different sizes. The mechanical, electrical, thermal and barrier properties of resulting PLA/GNP nanocomposites and their inter-relationship with the microstructure of the composites is revealed. The effect of annealing on dynamic percolation and conductive network formation of PLA/GNP composites including the effect of hybrid GNP fillers of different size is reported, indicating the underlying mechanisms for different behaviours of GNP fillers of different size. Multifunctional engineering biopolymers with improved performances (mechanical and electrical) and added functionalities (barrier properties) were successfully developed through controlled filler distribution and orientation using multilayer co-extrusion technology. Changes in mechanical properties of the PLA/GNP multilayer nanocomposites were successfully correlated with GNP orientation in the filled layers. Multilayer PLA/GNP nanocomposites demonstrated excellent mechanical and barrier properties with low filler loadings compared to traditional mono-extruded films.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:766018
Date January 2017
CreatorsGao, Yuqing
PublisherQueen Mary, University of London
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://qmro.qmul.ac.uk/xmlui/handle/123456789/29608

Page generated in 0.0017 seconds