Les réseaux complexes sont un paradigme de plus en plus utilisé pour modéliser la structure des systèmes complexes. Les connexions neuronales ou la transmission de maladies entre différents humains sont des exemples typiques de ce genre de structure. L'un des défis de la science des réseaux est de fournir des outils permettant de les analyser, notamment par le développement de modèles aléatoires de réseaux. Ces modèles permettent de supposer un hasard sous-jacent dans la construction d'un ensemble de réseaux, tout en conservant certaines propriétés importantes. En comparant un réseau mesuré dans un système réel à ceux issus d'un ensemble généré à l'aide d'un modèle aléatoire, il est possible d'identifier des propriétés ne pouvant pas s'expliquer par le hasard et ainsi mettre en évidence la présence de processus de formation cachés. Ce projet de maîtrise vise à développer une famille de modèles aléatoires qui se base sur une propriété de centralité des nœuds nommée la décomposition en oignon. Des algorithmes sont développés afin d'échantillonner des réseaux issus de différents ensembles. On montre que ces algorithmes peuvent construire les échantillons sans aucun biais dans le cas où les contraintes sont conservées exactement, et que les échantillons construits sont représentatifs des ensembles dans le cas où les contraintes sont conservées en moyenne sur l'ensemble. Finalement, on compare les nouveaux ensembles développés avec des ensembles déjà existants afin d'obtenir une nouvelle intuition sur le rôle que joue l'organisation à moyenne échelle sur les propriétés des réseaux complexes réels. / Complex networks are recent tools with a growing popularity that are used to study the structure of complex systems. Examples of these structures are the connections between neurons or the transmission of diseases along social ties in a population, both represented as links between nodes. A major challenge in network science is to develop tools that allow to understand these complex structures. Among these tools is the use of random graph models, which allow us to build ensembles of networks that share a common property while also having an underlying randomness. By comparing a network obtained from real data to a random graph model, it is possible to identify certain properties that cannot be explained by randomness, thereby highlighting the existence of some hidden formation process. This project aims to develop a family of random graph models that are based on a centrality property called the Onion Decomposition. Algorithms to create representative samples of these models are proposed. We show that the algorithms build the sample with no bias in the case of exact constraints, or with the proper bias in the case where the constraints are kept on average. Finally, we compare the new ensembles to ensembles in the literature to obtain a better intuition on the role of meso-scale organization in real complex networks.
Identifer | oai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/108104 |
Date | 14 November 2023 |
Creators | Thibault, François |
Contributors | Allard, Antoine |
Source Sets | Université Laval |
Language | French |
Detected Language | French |
Type | COAR1_1::Texte::Thèse::Mémoire de maîtrise |
Format | 1 ressource en ligne (vii, 87 pages), application/pdf |
Rights | http://purl.org/coar/access_right/c_abf2 |
Page generated in 0.0016 seconds