Return to search

Social Approaches to Disease Prediction

Objective: This thesis focuses on design and evaluation of a disease prediction system that be able to detect hidden and upcoming diseases of an individual. Unlike previous works that has typically relied on precise medical examinations to extract symptoms and risk factors for computing probability of occurrence of a disease, the proposed disease prediction system is based on similar patterns of disease comorbidity in population and the individual to evaluate the risk of a disease.
Methods: We combine three machine learning algorithms to construct the prediction system: an item based recommendation system, a Bayesian graphical model and a rule based recommender. We also propose multiple similarity measures for the recommendation system, each useful in a particular condition. We finally show how best values of parameters of the system can be derived from optimization of cost function and ROC curve.
Results: A permutation test is designed to evaluate accuracy of the prediction system accurately. Results showed considerable advantage of the proposed system in compare to an item based recommendation system and improvements of prediction if system is trained for each specific gender and race.
Conclusion: The proposed system has been shown to be a competent method in accurately identifying potential diseases in patients with multiple diseases, just based on their disease records. The procedure also contains novel soft computing and machine learning ideas that can be used in prediction problems. The proposed system has the possibility of using more complex datasets that include timeline of diseases, disease networks and social network. This makes it an even more capable platform for disease prediction. Hence, this thesis contributes to improvement of the disease prediction field. / Graduate / 0800 / 0766 / 0984 / mehrdadmansouri@yahoo.com

Identiferoai:union.ndltd.org:uvic.ca/oai:dspace.library.uvic.ca:1828/5735
Date25 November 2014
CreatorsMansouri, Mehrdad
ContributorsStege, Ulrike, Agathoklis, Panajotis
Source SetsUniversity of Victoria
LanguageEnglish, English
Detected LanguageEnglish
TypeThesis
RightsAvailable to the World Wide Web, http://creativecommons.org/publicdomain/zero/1.0/

Page generated in 0.0019 seconds