Return to search

Drought responses of C3 and C4 (NADP-ME) Panicoid grasses

The success of C₄ plants lies in their ability to concentrate CO₂ at the site of Rubisco thereby conferring greater efficiencies of light, water and nitrogen. Such characteristics should advantage C₄ plants in arid, hot environments. However, not all C₄ subtypes are drought tolerant. The relative abundance of NADP-ME species declines with increasing aridity. Furthermore, selected species have been demonstrated as being susceptible to severe drought showing metabolic limitations of photosynthesis. However there is a lack of phylogenetic control with many of these studies. The aims of this study were to determine whether the NADP-ME subtype was inherently susceptible to drought by comparing six closely related C₃ and C₄ (NADP-ME) Panicoid grasses. Gas exchange measurements were made during a natural rainless period and a controlled drought / rewatering event. Prior to water stress, the C₄ species had higher assimilation rates (A), and water use efficiencies (WUE[subscript leaf]) than the C₃ species, while transpiration rates (E) and stomatal conductances (g[subscript s]) were similar. At low soil water content, the C₃ species reduced gs by a greater extent than the C₄ species, which maintained higher E during the driest periods. The C₄ species showed proportionally greater reductions in A than the C₃ species and hence lost their WUE[subscript leaf] and photosynthetic advantage. CO₂ response curves showed that metabolic limitation was responsible for a greater decrease in A in the C₄ type than the C₃ type during progressive drought. Upon re-watering, photosynthetic recovery was quicker in the C species than the C₄ species. Results from whole plant measurements showed that the C₄ type had a significant whole plant water use efficiency advantage over the C₃ type under well-watered conditions that was lost during severe drought due to a greater loss of leaf area through leaf mortality rather than reductions in plant level transpiration rates. The C₃ type had xylem characteristics that enhanced water-conducting efficiency, but made them vulnerable to drought. This is in contrast to the safer xylem qualities of the C₄ type, which permitted the endurance of more negative leaf water potentials than the C₃ type during low soil water content. Thus, the vulnerability of photosynthesis to severe drought in NADP-ME species potentially explains why NADP-ME species abundance around the world decreases with decreasing rainfall.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:rhodes/vital:4193
Date January 2008
CreatorsFrole, Kristen Marie
PublisherRhodes University, Faculty of Science, Botany
Source SetsSouth African National ETD Portal
LanguageEnglish
Detected LanguageEnglish
TypeThesis, Masters, MSc
Format125 leaves, pdf
RightsFrole, Kristen Marie

Page generated in 0.0018 seconds