In this thesis we introduce and study the (i) Grassmannian, (ii) Lagrangian Grassmannian, and (iii) double Lagrangian Grassmannian of subspaces in ( A ⊗ B )n, where A and B are normed division algebras, i.e. R,C,H or O . / This gives a simple and uniform description of all symmetric spaces. This is analogous to Tits magic square description for simple Lie algebras. / We show that every irreducible compact Riemannian symmetric space X must be one of these Grassmannian spaces (up to a finite cover) or a compact simple Lie group. Furthermore, its noncompact dual symmetric space is the open sub-manifold of X consisting of spacelike linear subspaces, at least in the classical cases. / Huang, Yongdong. / "July 2007." / Adviser: Naichung Conan Leung. / Source: Dissertation Abstracts International, Volume: 69-01, Section: B, page: 0353. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references (p. 64-65). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese. / School code: 1307.
Identifer | oai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_343978 |
Date | January 2007 |
Contributors | Huang, Yongdong., Chinese University of Hong Kong Graduate School. Division of Mathematics. |
Source Sets | The Chinese University of Hong Kong |
Language | English, Chinese |
Detected Language | English |
Type | Text, theses |
Format | electronic resource, microform, microfiche, 1 online resource (65 p. : ill.) |
Rights | Use of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/) |
Page generated in 0.0017 seconds