Return to search

Interpretable Machine Learning Architectures for Efficient Signal Detection with Applications to Gravitational Wave Astronomy

Deep learning has seen rapid evolution in the past decade, accomplishing tasks that were previously unimaginable. At the same time, researchers strive to better understand and interpret the underlying mechanisms of the deep models, which are often justifiably regarded as "black boxes". Overcoming this deficiency will not only serve to suggest better learning architectures and training methods, but also extend deep learning to scenarios where interpretability is key to the application. One such scenario is signal detection and estimation, with gravitational wave detection as a specific example, where classic methods are often preferred for their interpretability. Nonetheless, while classic statistical detection methods such as matched filtering excel in their simplicity and intuitiveness, they can be suboptimal in terms of both accuracy and computational efficiency. Therefore, it is appealing to have methods that achieve ``the best of both worlds'', namely enjoying simultaneously excellent performance and interpretability.

In this thesis, we aim to bridge this gap between modern deep learning and classic statistical detection, by revisiting the signal detection problem from a new perspective. First, to address the perceived distinction in interpretability between classic matched filtering and deep learning, we state the intrinsic connections between the two families of methods, and identify how trainable networks can address the structural limitations of matched filtering. Based on these ideas, we propose two trainable architectures that are constructed based on matched filtering, but with learnable templates and adaptivity to unknown noise distributions, and therefore higher detection accuracy. We next turn our attention toward improving the computational efficiency of detection, where we aim to design architectures that leverage structures within the problem for efficiency gains. By leveraging the statistical structure of class imbalance, we integrate hierarchical detection into trainable networks, and use a novel loss function which explicitly encodes both detection accuracy and efficiency. Furthermore, by leveraging the geometric structure of the signal set, we consider using signal space optimization as an alternative computational primitive for detection, which is intuitively more efficient than covering with a template bank. We theoretical prove the efficiency gain by analyzing Riemannian gradient descent on the signal manifold, which reveals an exponential improvement in efficiency over matched filtering. We also propose a practical trainable architecture for template optimization, which makes use of signal embedding and kernel interpolation.

We demonstrate the performance of all proposed architectures on the task of gravitational wave detection in astrophysics, where matched filtering is the current method of choice. The architectures are also widely applicable to general signal or pattern detection tasks, which we exemplify with the handwritten digit recognition task using the template optimization architecture. Together, we hope the this work useful to scientists and engineers seeking machine learning architectures with high performance and interpretability, and contribute to our understanding of deep learning as a whole.

Identiferoai:union.ndltd.org:columbia.edu/oai:academiccommons.columbia.edu:10.7916/svkv-cr40
Date January 2024
CreatorsYan, Jingkai
Source SetsColumbia University
LanguageEnglish
Detected LanguageEnglish
TypeTheses

Page generated in 0.0018 seconds