Return to search

Software Defined Radio Feature Modelling and Implementation of RDS2 Encoder

Radio broadcasting is the primary part of the infotainment system in automobile and nowadays it is not only uses for the entertainment but facilitate the users by broadcasting digital information along with audio data. Radio Data System (RDS) is the radio broadcasting communication standard that broadcasts the digitally encoded data on the conventional band of the analogue FM radio. It transfers different type of data that uses for various applications along with audio channel of the FM radio station and overcome the glitches of the car radio to big scope. It is using commercially in the infotainment system of the automobile with basic features of the RDS since fifteen years. However, it is facing issues with lower data rates as compared to other digital radio broadcasting technologies that are also using in many countries. To confront this issue, RDS forum proposed the standardization of RDS with RDS2 in 2018, So RDS2 has been standardized and published that improves the data capacity by adding more channels. Hence, developers can use these channels for broadcasting the additional information.
The ultimate goal of thesis is the development of RDS2 encoder, which increases the data capacity up to four times as compared to currently RDS encoder by upgrading the data channels with the modeling of additional RDS2 features and services. This thesis proposes an approach for the implementation and validation of encoder with complete simulation of FM-RDS2 transmitter under all standardized feature modeling in the Software Defined Radio (SDR) environment. For this purpose, GNU Radio Companion (GRC) is used which offers the signal processing blocks to construct SDR modules. Using GRC, three main steps will be completed by using different libraries and tools. Implementation of RDS2 encoder and data-rate enforcer blocks with features modeling are written in C++ language. GUI designing of each block is executed in XML script language and simulation of complete FM-RDS2 transmitter using all-new custom and predefined signal processing blocks. Our determinative observation shows this approach remarkable improvements in terms of a prototype of new standard’s encoder, interpolating property of framework and decreasing the cost.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:77539
Date25 January 2022
CreatorsFurqan, Rao Muhammad Waseem
ContributorsHardt, Wolfram, Nagler, Michael, Ladanyi, Attila, Technische Universität Chemnitz
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:masterThesis, info:eu-repo/semantics/masterThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0023 seconds