Return to search

Ecosystem Functioning of Great Salt Lake Wetlands

The Great Salt Lake (GSL) wetlands account for ~75% of all Utah wetlands and provide not only critical habitat for millions of migratory birds, but also provide valuable ecosystem functions and services as well as economic benefits to Utahns. However, these wetlands are facing an aggressive invader, Phragmites australis, that has spreading across the GSL wetlands and replacing native wetland habitats. Wetland managers have spent countless resources and time trying to control the spread of P. australis and restore GSL wetlands. However, we do not fully understand how these wetlands functions and services are being altered with this habitat homogenization because functional data for our wetland species have not been well documented. This lack of knowledge may hinder wetland restoration efforts.
To create baseline functional data for the GSL wetland species and better understand how the spread of P. australis might be affecting the overall health of the system, I measured eight individual ecosystem functions for seven dominant habitat types found across the GSL wetlands. I compared these individual functions across habitat types as well as created two different multifunctionality indices using an averaging and a thresholds approach. With these comparisons, I was able to determine the distinct functional strengths of different wetland habitat types and their overall functional abilities.
I found that functional abilities varied greatly by habitat type and that not one single habitat could support every function even at the lowest threshold measured. I found that Typha latifolia, Schoenoplectus acutus, and P. australis, had the highest multifunctional values. However, I also found that some habitats offered unique functions, such as Salicornia rubra and playa, and that these functions were lacking in other habitats, including the most multifunctional habitats. These findings suggest that maintaining habitat heterogeneity will be critical in ensuring a fully functioning wetland system that can provide a multitude of ecosystems services that benefit both humans and wildlife. The findings of this study will supply wetland managers with a better understanding of the functional strengths of different wetland habitats. This data will aid in ongoing restoration efforts by enabling managers to target certain functions and create more efficient and effective management plans.

Identiferoai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-8686
Date01 August 2019
CreatorsPendleton, Maya Cassidy
PublisherDigitalCommons@USU
Source SetsUtah State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceAll Graduate Theses and Dissertations
RightsCopyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact digitalcommons@usu.edu.

Page generated in 0.0019 seconds