In this work, the analysis of the computation of the greatest common divisor of univariate and bivariate polynomials is presented. The whole process is split into three stages. In the first stage, data preprocessing is explained and the resulting better numerical behavior is demonstrated. Next stage is concerned with the problem of the computation of the numerical rank of the Sylvester matrix, from which the degree of the greatest common divisor is obtained. The last stage is the actual algorithm for calculating the greatest common divisor of two polynomials. Furthermore, the underlying theory behind the computation of the greatest common divisor is explained and illustrated on many examples. 1
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:304105 |
Date | January 2012 |
Creators | Kuřátko, Jan |
Contributors | Zítko, Jan, Janovský, Vladimír |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0014 seconds