Return to search

Physical Transformations for Greener Chemical Processes

Homogenous acid catalysts are prevalent throughout the chemical industry but all have the drawback of requiring post reaction neutralization and subsequent downstream removal of the product salt. The use of a base to neutralize the acid and the processing of the salt are ancillary to the process and the disposal of the salt is an environmental concern. The work presented here shows the use of alkylcarbonic acids, which form in situ with CO₂ pressure and neutralize on loss of CO₂ pressure rather than requiring a base. Thus CO₂ can be used to "switch" the acid on and off.
The properties of alkylcarbonic acids are explored to gain understanding of the mechanisms by which they act. The acids are also used to catalyze the synthesis of α-pinene, methyl yellow, and benzyl iodide. These reactions are examples of common acid catalyzed reactions where this technology could be implemented.
The second half of the work explores two other "switches". The first is using temperature to break an emulsion with a novel thermally cleavable surfactant. This technology has potential applications in a wide range of fields where surfactants are used including polymerization, oil recovery, and biosynthesis. The second is using CO₂ to liquefy a solid ionic compound to allow its use as a solvent. This would greatly increase the number of ionic species available for use in ionic liquid-CO₂ biphasic systems.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/11654
Date20 July 2005
CreatorsWeikel, Ross R.
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Languageen_US
Detected LanguageEnglish
TypeDissertation
Format553996 bytes, application/pdf

Page generated in 0.0022 seconds