Return to search

A framework for the design of simulation-based greenhouse control

The main objectives were: (1) to develop tools to aid in the design of enclosed agro-ecosystems, and (2) to use these tools to develop a prototype simulation-based control system. Three tools were developed: (1) a conceptual framework, (2) a (simulated) greenhouse system and (3) a simulation approach within OS/2. / Part of the conceptual framework was dedicated to "conscious control", defined as a form of control practised by an entity that uses models of itself in its decision-making processes. The greenhouse system was composed of six modules (a simulation manager, a weather generator, a greenhouse model, a crop model, a Pavlovian controller and a cognitive controller), which were implemented under OS/2 as separate processes. / The greenhouse system was used to develop a prototype simulation-based controller. Primarily, the role of the controller was to determine temperature setpoints that would minimize the heating load. The simulation model used by the controller was an artificial neural network. The controller adapted temperature setpoints to anticipated meteorological conditions and reduced greenhouse energy consumption, in comparison with a more traditional controller. / Generally, the results showed the feasibility and illustrated some of the advantages of using simulation-based control. The research resulted in the definition of elements that will allow the creation of a methodological framework for the design of simulation-based control and, eventually, a theory of conscious control.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.41652
Date January 1994
CreatorsLacroix, René
ContributorsKok, Robert (advisor)
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageDoctor of Philosophy (Department of Agricultural Engineering.)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
Relationalephsysno: 001397865, proquestno: NN94653, Theses scanned by UMI/ProQuest.

Page generated in 0.0022 seconds