Return to search

The timing and source of gold-bearing fluids in the Laverton Greenstone Belt, Yilgarn Craton, with emphasis on the Wallaby gold deposit

[Truncated abstract] The Laverton Greenstone Belt (LGB), located in the northeastern part of the Eastern Goldfields Province (EGP) of the Yilgarn Craton, Western Australia, has a total contained gold endowment of over 690t. An important feature of the gold deposits in the LGB is their close spatial association with granitoids, with many gold deposits located adjacent to, or hosted by, granitoids. Recently-proposed genetic models for Archaean orogenic gold deposits have emphasised the role of granitoids in the formation of ore-deposits, but differ significantly in the nature of that role. Some models suggest that the granitoids are a source of ore-fluids and solutes, whereas others suggest that granitoids exert an important structural control on gold mineralisation. Such competing genetic models for gold mineralisation variably propose either a proximal-magmatic or distal-metamorphic, or less commonly distal-magmatic, source for goldbearing fluids, or mixing of fluids from multiple sources. Isotope geochemistry and geochronological studies are used to constrain the source and timing of auriferous fluids at nine gold deposits in the LGB in an attempt to differentiate between conflicting genetic models. To overcome the lack of detailed deposit-scale geological constraints inherent to any regional study, hypotheses generated from regional datasets are tested in a detailed case-study of the Wallaby gold deposit. The Pb-isotope compositions of ore-related sulphides from deposits in the LGB plot along the line representing crustal-Pb in the Norseman-Wiluna Belt of the EGP, with individual deposits clustering with other nearby deposits based on their geographic location. This trend is similar to that recorded in the Kalgoorlie-Norseman region in the southern EGP, and is consistent with a basement Pb reservoir for gold-bearing fluids. As such, data are consistent with a similar fluid source for all gold deposits. The Nd and Sr isotopic composition of goldrelated scheelite in the LGB clusters very tightly. The inferred ore-fluid composition has a slightly positive εNd, similar to ore fluids at other gold deposits in the EGP for which a proximal magmatic source is highly improbable. As such, Sr and Nd data are consistent with a similar fluid source for the gold deposits analysed in the LGB, but cannot unequivocally define that source. The median S, C and O isotopic compositions of ore minerals from all nine different gold deposits studied in the LGB fall in a very narrow range

Identiferoai:union.ndltd.org:ADTP/221060
Date January 2004
CreatorsSalier, Brock Peter
PublisherUniversity of Western Australia. School of Earth and Geographical Sciences
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
RightsCopyright Brock, Peter Salier, http://www.itpo.uwa.edu.au/UWA-Computer-And-Software-Use-Regulations.html

Page generated in 0.0023 seconds