The LHCb detector is one of the four experiments being built to harness the proton-proton collisions provided by the Large Hadron Collider (LHC) at the European Organisation for Nuclear Research (CERN). The data rate expected, when the LHC experiments are fully operational, eclipses that of any previous scientific experiments and has motivated the adoption of a grid computing paradigm to store and process the data. Managing PetaBytes of data in a distributed environment provides a rich set of challenges related to scalability, reliability and performance. This thesis will present the data management requirements for executing the workload of the LHCb collab- oration. We present the systems designed that support all aspects of the grid data management for LHCb, from data transfer, to data integrity, and efficient data access. The distributed computing environment is inherently unstable and much focus has been made on providing systems that are ro- bust and resilient to observed failures.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:562367 |
Date | January 2009 |
Creators | Smith, Andrew Cameron |
Contributors | Clark, Philip J. |
Publisher | University of Edinburgh |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://hdl.handle.net/1842/3018 |
Page generated in 0.0014 seconds