Return to search

A TECHNO-ECONOMIC FEASIBILITY STUDY OF OFFSHORE WIND-HYDROGEN PRODUCTION IN SOUTHERN SWEDEN

To meet the energy targets and improve the lack of power and higher prices in southern Sweden, the amount of electricity must increase, and alternative fuel sources be introduced. This thesis examines the techno-economic feasibility of offshore wind-hydrogen production in southern Sweden, depending on whether an onshore- or offshore hydrogen system is used, and how grid connection subsidies would affect this. New research and development regarding the subjects were analyzed and reviewed. A project that has currently applied for a permit in southern Sweden, Skåne Offshore Wind Park, was used as a case study where the information from the review and data from similar parks were used to determine the cost and production for the two different systems. The costs were then adjusted according to the three different subsidy scenarios: current with no subsidies, partial with sea cable and transformer costs removed, or a full subsidy scenario where only the internal grid cost remained to achieve feasible levelized costs for electricity and hydrogen based on a discount rate of 6% and a lifetime of 25 years. Finally, a sensitivity analysis was performed.   The results showed that market competitive electricity prices are only achieved with an onshore hydrogen system- and only if a full subsidy is introduced or if a best-case scenario is applied. In a worst-case scenario, no competitive electricity prices were achieved. For the offshore hydrogen system, the extra fuel system is too inefficient for electricity production. For hydrogen, prices were achieved within a reasonable price range of green hydrogen for all scenarios, where the onshore hydrogen system was 4% more advantageous. In a best-case scenario, competitive values ​​even against blue hydrogen were achieved for the offshore hydrogen systems and for the full subsidy onshore hydrogen system. For hydrogen, the offshore hydrogen system's hydrogen prices were competitive regardless of subsidies, however this system had the highest CAPEX and OPEX costs.   The results of the study underline the need for fixed conditions but also the necessity of introducing a full subsidy for the grid connection cost - or best-case scenario conditions - to encourage further offshore wind power development.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-479691
Date January 2022
CreatorsHansson, Carol
PublisherUppsala universitet, Institutionen för geovetenskaper
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0024 seconds