Return to search

Algebraic and definable closure in free groups / Clôture algébrique et définissable dans les groupes libres

Nous étudions la clôture algébrique et définissable dans les groupes libres. Les résultats principaux peuvent être résumés comme suit. Nous montrons un résultat de constructibilité des groupes hyperboliques sans torsion au-dessus de la clôture algébrique d'un sous-ensemble engendrant un groupe non abélien. Nous avons cherché à comprendre la place qu'occupe la clôture algébrique acl_G(A) dans certaines décompositions de G. Nous avons étudié la possibilité de la généralisation de la méthode de Bestvina-Paulin dans d'autres directions, en considérant les groupes de type fini qui agissent d'une manière acylindrique (au sens de Bowditch) sur les graphes hyperboliques. Enfin, nous avons étudié les relations qui existent entre les différentes notions de clôture algébrique et entre la clôture algébrique et la clôture définissable / In Chapter 1 we give basics on combinatorial group theory, starting from free groups and proceeding with the fundamental constructions: free products, amalgamated free products and HNN extensions. We outline a synthesis of Bass-Serre theory, preceded by a survey on Cayley graphs and graphs of groups. After proving the main theorem of Bass-Serre theory, we present its application to the proof of Kurosh subgroup theorem. Subsequently we recall main definitions and properties of hyperbolic spaces. In Section 1.4 we define algebraic and definable closures and recall a few other notions of model theory related to saturation and homogeneity. The last section of Chapter 1 is devoted to asymptotic cones. In Chapter 2 we prove a theorem similar to Bestvina-Paulin theorem on the limit of a sequence of actions on hyperbolic graphs. Our setting is more general: we consider Bowditch-acylindrical actions on arbitrary hyperbolic graphs. We prove that edge stabilizers are (finite bounded)-by-abelian, that tripod stabilizers are finite bounded and that unstable edge stabilizers are finite bounded. In Chapter 3 we introduce the essential notions on limit groups, shortening argument and JSJ decompositions. In Chapter 4 we present the results on constructibility of a torsion-free hyperbolic group from the algebraic closure of a subgroup. Also we discuss constructibility of a free group from the existential algebraic closure of a subgroup. We obtain a bound to the rank of the algebraic and definable closures of subgroups in torsion-free hyperbolic groups. In Section 4.2 we prove some results about the position of algebraic closures in JSJ decompositions of torsion-free hyperbolic groups and other results for free groups. Finally, in Chapter 5 we answer the question about equality between algebraic and definable closure in a free group. A positive answer has been given for a free group F of rank smaller than 3. Instead, for free groups of rank strictly greater than 3 we found some counterexample. For the free group of rank 3 we found a necessary condition on the form of a possible counterexample.

Identiferoai:union.ndltd.org:theses.fr/2012LYO10090
Date05 June 2012
CreatorsVallino, Daniele
ContributorsLyon 1, Università degli studi (Turin, Italie). Dipartimento di matematica, Ould Houcine, Abderezak, Zambella, Domenico
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0032 seconds