Return to search

The Hyperbolic Formal Affine Demazure Algebra

In this thesis, we extend the construction of the formal (affine) Demazure algebra due to Hoffnung, Malagón-López, Savage and Zainoulline in two directions. First, we introduce and study the notion of formal Demazure lattices of a Kac-Moody root system and show that the definitions and properties of the formal (affine) Demazure operators and algebras hold for such lattices. Second, we show that for the hyperbolic formal group law the formal Demazure algebra is isomorphic (after extending the coefficients) to the Hecke algebra.

Identiferoai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/35218
Date January 2016
CreatorsLeclerc, Marc-Antoine
ContributorsNeher, Erhard, Zaynullin, Kirill
PublisherUniversité d'Ottawa / University of Ottawa
Source SetsUniversité d’Ottawa
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0137 seconds