Return to search

A computational study of thiocyanate based laser flash photolysis reporters

Radical chemistry has always been a very active area of research. This is due to the fact that radicals are both very numerous in variety and very reactive. A radical is any chemical species that possesses one or more unpaired electrons. These unpaired electrons usually lead to the extremely reactive characteristics of the chemical species. This reactivity can be beneficial; this is true in the case of polymer chemistry. For instance, some plastics are synthesized through a radical chain reaction. In addition, radicals are used in the synthesis of novel organic compounds with the goal of creating new pharmaceuticals. Radical reactivity can be detrimental as well; radicals have been implicated in a number of ailments including heart disease and cancer. One particular view of cancer cells is that their DNA is somehow mutated; a radical could cause this mutation. In fact, one radical species in particular is known to oxidize DNA, the hydroxyl radical.Unfortunately, the electronic structures of most radicals do not lend themselves to direct study by modem spectroscopic methods. Recently, researchers have discovered that hydroxyl radical, being very reactive in nature, easily complexes with other species. If these complexes are spectrosopically active, then we can study the radical reactivity indirectly through a "reporter" molecule. One such approach uses the transient visible absorbance of the complexes of hydroxyl radical with the thiocyanate anion. In addition, there is other experimental evidence that suggests that thiocyanate anion complexes with other radicals as well. These experiments have been very successful in improving our understanding of radical chemistry, but very little is known about the electronic structure or connectivities of these complexes.Our research is comprised of a systematic theoretical study of the structure, vibrational frequencies, and spectroscopic properties of complexes of hydroxyl radical with thiocyanate anion. In addition, we will investigate the structures, vibrational frequencies, and spectroscopic properties of complexes of thiocyanate anion and other radical species.The ultimate goal of our research is to determine the feasibility of utilizing thiocyanate anion as an LFP reporter for radical species other than hydroxyl radical.Our theoretical approach is based in computerized, mathematical models of the properties of the species being studied, based on quantum mechanics and density functional theory as implemented in the computational chemistry software Gaussian 03. Our study includes calculations that provide the energies, optimized geometry, vibrational frequencies, charge and spin densities, and other properties of the various species. This consists of the various isolated radicals and anions, complexes, transitions states, pre-reactive complexes, and structural isomers. / Department of Chemistry

Identiferoai:union.ndltd.org:BSU/oai:cardinalscholar.bsu.edu:handle/188105
Date January 2006
CreatorsCotton, Charles E.
ContributorsPoole, James S.
Source SetsBall State University
Detected LanguageEnglish
Formativ, 53 leaves : ill. (some col.) ; 28 cm.
SourceVirtual Press

Page generated in 0.002 seconds