Roughly speaking, a group G is omnipotent if orders of finitely many elements can be controlled independently in some finite quotients of G. We proved that pi1(S) is omnipotent when S is a surface other than P2,T2 or K2 . This generalizes the fact, previously known, that free groups are omnipotent. The proofs primarily utilize geometric techniques involving graphs of spaces with the aim of retracting certain spaces onto graphs. / Approximativement, on peut dire qu'un groupe G est omnipotent si les ordresquantité d'élements d'une quantite finie d'elements peuvent etre controles independamment dans unquotient fini de Nous avons prouve que 7Ti(5) est omnipotent quand S estune surface autre que P2, T2 ou K2. Cela generalise le fait, deja connu, que lesgroupes libres sont omnipotents. La preuve utilise principalement des techniquesgeometriques impliquant des graphiques d'espaces ayant pour but de retractercertains espaces en graphiques.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.100245 |
Date | January 2007 |
Creators | Bajpai, Jitendra. |
Publisher | McGill University |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation |
Format | application/pdf |
Coverage | Master of Science (Department of Mathematics and Statistics.) |
Rights | © Jitendra Bajpai, 2007 |
Relation | alephsysno: 002762643, proquestno: AAIMR51068, Theses scanned by UMI/ProQuest. |
Page generated in 0.0103 seconds