Return to search

Théorie algébrique des systèmes à évènements discrets

Considérons les systèmes à évènements discrets qui sont modélisables par des réseaux de Pétri du type "graphes d'évènements temporisés", Ils ont un comportement optimal (fonctionnement au plus tôt) qui peut-être calculé sans simulation par un système dynamique qui est linéaire dans l'algèbre des dïodes (max,+) ou (min,+). Le comportement asymptotique d'un tel système à évènements discrets est cyclique et les caractéristiques de ce cycle (période, délai, motif) sont analysables par un calcul de valeur propre sur la matrice de dynamique. À partir de cette formulation linéaire, une représentation externe (fonction de transfert) peut-être obtenue grâce à un calcul formel sur des séries à coefficients dans les dïodes, la fonction de transfert d'un tel système est rationnelle au sens des dïoides et est factorisable en une expression finie de polynômes.

Identiferoai:union.ndltd.org:CCSD/oai:pastel.archives-ouvertes.fr:pastel-00654163
Date21 December 1988
CreatorsMoller, Pierre
PublisherÉcole Nationale Supérieure des Mines de Paris
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0021 seconds