I addressed the effects of landscape characteristics on ruffed grouse (Bonasa umbellus) home range size and movement, and examined grouse selection for specific landscape characteristics and cover types. Grouse home ranges and movement patterns derived from telemetry data gathered from fall 1996 through fall 1998 were overlaid onto a GIS database of Clinch Mtn. Wildlife Management Area, VA. This database was developed from GPS data and LANDSAT thematic mapping imagery (30 m pixel scale) and was composed of 22 cover types. Landscape metrics were calculated using FRAGSTATS/ARC, and multiple regression was used to relate changes in home range size and movement to these metrics. I used Wilcoxon signed-rank tests to compare the values of landscape metrics calculated for each home range to those calculated for the area encompassed by the home range plus a surrounding 300 m buffer. I used Wilcoxon rank-sum tests to compare the values of landscape metrics for the home ranges to the metrics calculated for 50 33 ha random plots. I used compositional analysis to test for preferential use of cover types.
I developed 2 regression models (P < 0.01) relating changes in home range size to landscape characteristics, 1 model (P = 0.09) relating the distance between seasonal home range centers to landscape characteristics, and 1 model (P = 0.03) relating average daily movement to landscape characteristics. Grouse home range size increased as patch shape became more irregular and patch size and the number of different cover types per hectare increased, and decreased as the amount of high contrast edge in the landscape increased. The distance between seasonal home range centers increased as Shannon's diversity index and the average distance between patches of similar cover types increased, and decreased as the amount of high contrast edge increased. Average daily movement increased as the average distance between patches of the same cover type increased and as the percent cover of a full (~75%) rhododendron and/or laurel understory within a grouse's home range increased, and decreased as the amount of high contrast edge in a bird's home range increased.
Ruffed grouse were selecting areas with high densities of smaller than average patches that were of uniform size and regular shape and contained higher than average amounts of high contrast edge. Areas containing a greater diversity of cover types than what was available in the study area also were preferred. Within these areas, clearcuts and mesic deciduous stands with a rhododendron/laurel understory were the most preferred cover types.
Creating and maintaining a landscape with high densities of small patches that are of uniform size and regular (square) shape would provide the highest quality ruffed grouse habitat in this region. Several of these patches should be early successional cover to provide an abundance of high contrast edge. Rhododendron and/or laurel thickets also may be beneficial as supplemental winter cover, and mesic stands of mature hardwoods should be well interspersed with these cover types to provide supplemental food sources. / Master of Science
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/33489 |
Date | 11 June 1999 |
Creators | Fearer, Todd Matthew |
Contributors | Fisheries and Wildlife Sciences, Norman, Gary W., Haas, Carola A., Kirkpatrick, Roy L., Stauffer, Dean F. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Relation | etdversion.pdf |
Page generated in 0.0022 seconds