Consideramos dois tópicos distintos relacionados a modelos clássicos da mecânica estatísticas de equilíbrio. O primeiro constitui-se na análise de equação parabólicas semi-lineares associadas à transformação de grupo de renormalização para o gás de Coulomb hierárquico bidimensional e o gás dipolos hierárquicos em dimensão d>1 após tomarmos um limite apropriado (limite L 1 do tamanho do bloco). O outro tópico estudado foi a construção de uma função majorante (, z) para a pressão termodinâmica de um gás formado por partículas interagentes com atividade z e temperatura -1, cuja interação entre dois corpos pode ser decomposta em escalas como um potencial estável. Somos capazes de demonstrar que o problema de valor inicial dado pela equação do gás de Coulomb está bem definido (existência, unicidade e dependência contínua das soluções) em um espaço funcional adequado e a solução converge assintoticamente para uma das infinitas contáveis soluções de equilíbrio. Quanto ao gás de dipolos, embora não tenhamos conseguido provar a existência e unicidade das soluções, garantimos que a única solução estacionária limitada inferiormente é a trivial nula, que é uma solução estável. Ao menos no caso dos modelos hierárquicos, os resultados obtidos permitem dar uma resposta definitiva à conjectura de Gallavotti e Nicolò sobre uma sequência infinita de transições de fase. A função majorante é construída como a solução de uma equação diferencial parcial quase-linear de primeira ordem. Através da do método das características relacionamos a solução (majorante) à função W de Lambert cuja expansão em série possui uma singularidade originada pelo corte que a função W possui no plano complexo. A descrição da função majorante como uma função W possui no plano complexo. A descrição da função majorante como uma função W permite uma melhora nas estimativas de raio de convergência para série de Mayer para pressão. / We have considered in this thesis two distinct topics related to classic models in equilibrium statistical mechanics. The first one is the analysis of semilinear parabolic partial differential equations given by a suitable limit (size of block L 1) in the renormalization group for the dipole gas in any dimension d>1. The other topic is the construction of a majorant function (, z) for the thermodynamic -1 whose potential admits a scale decomposition in terms of some stable potential. We are capable to demonstrate the well-posedness (existence, uniqueness and continuous dependence of solutions) for Coulomb gas equations and the global asymptotic convergence of the flow to one of its countably many equilibrium solutions. The dipole gas equations are technically more difficult and lack the results weve achieved in Coulomb gas but, despite its difficulties, we can establish the uniqueness of the trivial solution as a equilibrium ane and its stabilish. At least for hierarchical models, the established results give a definite answer to Gallovotti and Niclolòs conjecture of na infinite of phase transitions. The majorant function is constructed as the solution of a first order quase-linear partial differential equation. By means of the characteristics method we are able to relate its solution (the majorant) to Lamberts W-function whose series expansion possess a singularity given by W-function allows better estimates for Mayer series convergence.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-18072012-094211 |
Date | 10 December 2003 |
Creators | Leonardo Fernandes Guidi |
Contributors | Domingos Humberto Urbano Marchetti, Nestor Felipe Caticha Alfonso, Joao Carlos Alves Barata, Aldo Procacci, Clodoaldo Grotta Ragazzo |
Publisher | Universidade de São Paulo, Física, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0026 seconds