abstract: The current method of measuring thermal conductivity requires flat plates. For most common civil engineering materials, creating or extracting such samples is difficult. A prototype thermal conductivity experiment had been developed at Arizona State University (ASU) to test cylindrical specimens but proved difficult for repeated testing. In this study, enhancements to both testing methods were made. Additionally, test results of cylindrical testing were correlated with the results from identical materials tested by the Guarded Hot&ndashPlate; method, which uses flat plate specimens. In validating the enhancements made to the Guarded Hot&ndashPlate; and Cylindrical Specimen methods, 23 tests were ran on five different materials. The percent difference shown for the Guarded Hot&ndashPlate; method was less than 1%. This gives strong evidence that the enhanced Guarded Hot-Plate apparatus in itself is now more accurate for measuring thermal conductivity. The correlation between the thermal conductivity values of the Guarded Hot&ndashPlate; to those of the enhanced Cylindrical Specimen method was excellent. The conventional concrete mixture, due to much higher thermal conductivity values compared to the other mixtures, yielded a P&ndashvalue; of 0.600 which provided confidence in the performance of the enhanced Cylindrical Specimen Apparatus. Several recommendations were made for the future implementation of both test methods. The work in this study fulfills the research community and industry desire for a more streamlined, cost effective, and inexpensive means to determine the thermal conductivity of various civil engineering materials. / Dissertation/Thesis / M.S. Civil and Environmental Engineering 2011
Identifer | oai:union.ndltd.org:asu.edu/item:14456 |
Date | January 2011 |
Contributors | Morris, Derek Michael (Author), Kaloush, Kamil E (Advisor), Mobasher, Barzin (Committee member), Phelan, Patrick E (Committee member), Arizona State University (Publisher) |
Source Sets | Arizona State University |
Language | English |
Detected Language | English |
Type | Masters Thesis |
Format | 99 pages |
Rights | http://rightsstatements.org/vocab/InC/1.0/, All Rights Reserved |
Page generated in 0.0018 seconds