Return to search

Nose Tip Recession Measuring System for Hypersonic Test Vehicles

A method is presented which permits the measure of nose tip recession of re-entry vehicles and advanced terminal interceptors by employing a double choked flow coolant gas system. Recession of the tip results in an increased exit flow area which reduces the total pressure of the gas in the blast tube. Measurement of the blast tube pressure and gas generator (chamber) pressure will produce an effective measurement of the nose tip recession as long as choked flow (i.e., sonic velocity) is maintained in both the tip exit area and the gas generator throat area. Governing flow equations documented in the literature are developed for double choked flow. Hypersonic wind tunnel test data are presented to verify the developed flow equations and to identify the mass flow ratios necessary to sustain double choked flow.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:rtd-1323
Date01 January 1977
CreatorsBrown, James Anthony
PublisherFlorida Technological University
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceRetrospective Theses and Dissertations
RightsWritten permission granted by copyright holder to the University of Central Florida Libraries to digitize and distribute for nonprofit, educational purposes.

Page generated in 0.002 seconds