Studying the microbiome in natural populations could improve our understanding of the biological factors that influence microbiome variation. If host genetic variation is important in microbiota assembly, then understanding genetic divergence among natural populations could be informative. Despite advances in sequencing technology, we have not yet taken full advantage of this technology in natural populations. Here we integrate genome-wide population genomic and microbiome analyses in wild threespine stickleback (Gasterosteus aculeatus) fish distributed throughout western Oregon, USA. We found that gut microbiome varied in diversity and composition more among than within wild host populations. Furthermore, this among population variation was better explained by host population genetic divergence than by environment and geography. We also identified a subset of gut microbial taxa that were most strongly sorted both across environments and across genetically divergent populations. We believe this study contributes generalizable methods and findings in host systems. This thesis includes supplemental materials. / 2021-04-30
Identifer | oai:union.ndltd.org:uoregon.edu/oai:scholarsbank.uoregon.edu:1794/24561 |
Date | 30 April 2019 |
Creators | Steury, Robert |
Contributors | Bohannan, Brendan |
Publisher | University of Oregon |
Source Sets | University of Oregon |
Language | en_US |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Rights | All Rights Reserved. |
Page generated in 0.0013 seconds