Les glycosaminoglycanes (GAG) forment une famille de polysaccharides linéaires retrouvés dans tous les tissus, au niveau des matrices extracellulaires et des surfaces cellulaires. Les héparanes sulfates (HS) sont des membres importants de cette famille et sont liés à une protéine dite cœur pour former ensemble le protéoglycane (PG). Selon le tissu et la nature de la protéine cœur, les HS, composés d'unités disaccharidiques de N-acétylglucosamine (GlcNAc) et d'acide glucuronique (GlcA) [-4GlcAβ1-4GlcNAcα1-] vont subir de nombreuses modifications. En effet, les HS sont modifiés par différentes sulfatations au niveau des deux oses et une épimérisation de l'acide glucuronique en acide iduronique (IdoA). Les différentes structures saccharidiques élaborées vont pouvoir être alors interagir avec une très grande quantité de protéines et jouer des rôles divers dans l'inflammation, la prolifération cellulaire, l'angiogenèse, la réponse immunitaire, l'attachement viral…L'étude de la structure des HS, du fait de la nature flexible et hétérogène de ces molécules, a été principalement focalisée sur des analyses fragmentaires du polysaccharide au niveau des séquences d'interaction avec les protéines. Lors de ces dépolymérisations, des informations sur le polysaccharide, notamment l'épimérisation, sont perdues.Dans ce travail, nous avons développé une approche basée sur la résonance magnétique nucléaire (RMN) bidimensionnelle 1H-13C pour l'étude de la composition saccharidique des HS réalisée directement à partir des HS isolés de cellules marquées au 13C. Pour cela, un protocole efficace de marquage et de purification des polysaccharides a été mis en place. En intégrant le volume des pics à différents déplacements chimiques par RMN, cette analyse non-destructive permet de déterminer à la fois le profil de sulfatation et d'épimérisation des HS. Cette analyse est appliquée efficacement à différents types cellulaires et est de grand intérêt pour mieux comprendre les changements dans les structures d'HS qui ont lieu lors de régulations physiologiques ou lors de développement pathologiques.Ces résultats ont permis d'ouvrir la voie à l'analyse des HS directement au niveau des cellules par RMN du solide. Les études dans ce contexte représentent un enjeu majeur pour la compréhension des différents rôles des HS et leur capacité à interagir avec une myriade de protéines in vivo. / Glycosaminoglycans (GAGs) belong to a linear polysaccharide family which are found within all tissues, at the extracellular matrix and cell surfaces levels. Heparan Sulfates (HS) are one of the major members of this family, they are bound to a core protein to form altogether the so-called proteoglycan (PG). Depending on the localization and on the core protein, the HS – composed of a N-acetylglucosamine (GlcNAc) and a glucuronic acid (GlcA) [-4GlcAβ1-4GlcNAcα1-] building block – undergo various modifications. Indeed, HS can be sulfated at different positions on both monosaccharide and the GlcA can be epimerized into an iduronic acid (IdoA). The fine structures of the polysaccharide will be able to interact with a large range of proteins and play a plethora of roles such as in inflammation processes, cell proliferation, angiogenesis, immune responses, viral attachment…The HS structural studies, due to the flexibility and heterogeneity of the polysaccharide, have so far been restricted to HS fragments able to bind proteins. The depolymerization techniques induce valuable information losses such as epimerization.In this work, we have successfully developed a nuclear magnetic resonance (NMR)-based approach to study HS features from 13C metabolically enriched cells. For this, an effective protocol to label and purify HS has been set up. By integrating peaks' volumes at well-resolved 1H-13C chemical shifts by NMR, the sulfation, epimerization and disaccharide profile can be determined from full-length HS. This method has been used to study HS from various cell types and is of important interest to better understand changes in HS structures that occur through physiologic and pathologic events.The results obtained open the way to analyze HS directly at the cell surface via solid state NMR techniques. In this context, these studies are a major challenge to decipher the different roles of HS and their ability to interact with so many partners in vivo.
Identifer | oai:union.ndltd.org:theses.fr/2014GRENV056 |
Date | 11 December 2014 |
Creators | Pegeot, Mathieu |
Contributors | Grenoble, Gans, Pierre, Sadir, Rabia |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0022 seconds