Dans la première partie de cette thèse, on présente des inégalités de concentration convexe pour des intégrales stochastiques. Ces résultats sont obtenus par calcul stochastique e tpar calcul de Malliavin forward/backward. On présente également des inégalités de déviation pour les exponentielles martingales à saut.Dans une deuxième partie on présente des théorèmes limites pour le conditionnement du mouvement brownien. / In the first part of this thesis, we present some convex concentration inequalities for stochastic integrals. These results are obtained by forward/backward stochastic calculus combined with Malliavin calculus. We also present deviation inequalities for exponentialjump-diffusion.In the second part, we present some limit theorems for the conditionning of Brownian motion.
Identifer | oai:union.ndltd.org:theses.fr/2012LAROS364 |
Date | 10 May 2012 |
Creators | Laquerrière, Benjamin |
Contributors | La Rochelle, Breton, Jean-Christophe, Privault, Nicolas |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0014 seconds