One of the most basic properties expected from block ciphers and hash functions is passing statistical randomness testing, as they are supposed to behave like random mappings. Previously, testing of AES candidate block ciphers was done by using the statistical tests defined in the NIST Test Suite. As some of the tests in this suite require long sequences, data sets are formed by concatenating the outputs of the algorithms obtained from various input types. However, the nature of block cipher and hash function algorithms necessitates devising tests and test parameters focused particularly on short sequences, therefore we propose a package of statistical randomness tests which produce reliable results for short sequences and test the outputs of the algorithms directly rather than concatenations. Moreover, we propose an alternative method to evaluate the test results and state the required computations of related probabilities for the new evaluation method.
We also propose another package of statistical tests which are designed basing on certain cryptographic properties of block ciphers and hash functions to evaluate their randomness, namely the cryptographic randomness testing. The packages are applied to the AES finalists, and produced more precise results than those obtained in similar applications. Moreover, the packages are also applied to SHA-3 second round candidate algorithms.
Identifer | oai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12613045/index.pdf |
Date | 01 February 2011 |
Creators | Sulak, Fatih |
Contributors | Doganaksoy, Ali |
Publisher | METU |
Source Sets | Middle East Technical Univ. |
Language | English |
Detected Language | English |
Type | Ph.D. Thesis |
Format | text/pdf |
Rights | To liberate the content for public access |
Page generated in 0.0019 seconds