Return to search

Dynamic visualization and genetic determinants of Sonic hedgehog protein distribution during zebrafish embryonic development / Dynamische Sichtbarmachung und genetische Determinanten der Sonic Sonic Hedgehog Protein Verteilung während der Embryonalentwicklung des Zebrafisches

The correct patterning of embryos requires the exchange of information between cells. This is in part achieved by the proper distribution of signaling molecules, many of which exert their function by establishing gradients of concentration. Because of this property they were named "morphogens", or "form giving" substances. Among these, proteins belonging to the Hedgehog (Hh) family have received much attention, owing to their unusual double lipid modification and their involvement in human disease, causing congenital birth defects and cancer. Great efforts have been made in order to elucidate the mechanisms by which Hh molecules are propagated in the embryo. However, no conclusive evidence exists to date to which structures these molecules localize and how they, despite their membrane association, establish a gradient of concentration. Therefore, I decided to study the distribution of the vertebrate Hh homolog, Sonic Hedgehog (Shh) in developing zebrafish embryos. By fluorescently tagging Shh proteins, I found that these localize to discrete punctate structures at the membranes of expressing cells. These were often regions from which filopodial protrusions emanated from the cells. Puctate deposits of Shh were also located outside of expressing cells. In dividing cells, Shh accumulated at the cleavage plane. Furthermore, by making use of confocal microscopy and time lapse analysis, I visualized Shh proteins moving in filopodial extensions present between cells. This suggests a novel mechanism of Shh distribution, which relies on the direct contact of cells by filopodia for the exchange of signaling proteins. In a second part of my thesis, I characterized genes implicated in regulating Shh protein distribution and signaling function. I cloned three zebrafish genes belonging to the Ext1 (exostosin) family of glycosyltransferases required for the synthesis of Heparan Sulfate Proteoglycans and established a tentative link of these genes to somitic Hh signaling. In addition, I characterized the developmental expression and function of zebrafish Rab23, a small GTPase, which acts as a negative regulator of the Shh signaling pathway. Performing knock-down experiments of zebrafish Rab23, I found that Rab23 functions in left-right axis specification, a process previously shown to depend on proper Shh signaling.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:swb:14-1101915621750-69414
Date01 November 2004
CreatorsSiekmann, Arndt
ContributorsTechnische Universität Dresden, Mathematik und Naturwissenschaften, Biologie, Max-Planck-Institut für Zellbiologie und Genetik, Prof. Dr. Michael Brand, Prof. Dr. Uwe Strähle, Prof. Dr. Bernard Hoflack, Prof. Dr. Michael Brand
PublisherSaechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:doctoralThesis
Formatapplication/pdf

Page generated in 0.0056 seconds