Return to search

Regulation of the ETn/MusD family of active mouse long terminal repeat retrotransposons

Long terminal repeat (LTR) retrotransposons account for approximately 10% of mouse and 8% of human genomes and may play a role in modifying gene expression. Many species harbor retrotransposon families encompassing both autonomous and non-autonomous members. Specifically, the mouse Early Transposon (ETn) family members lack all retroviral genes but are transcriptionally and retrotranspositionally active, causing over 20 known insertional germline mutations. ETns owe their retrotransposition potential to proteins encoded by structurally intact MusD retrotransposons with whom they share LTRs. ETn elements are transcribed at a much higher level than MusD retrotransposons in embryos and undifferentiated cells, suggesting their evasion of host restriction mechanisms. However, mechanisms responsible for the replicative success of non-autonomous retrotransposon subfamilies over their coding-competent relatives are poorly understood.

In the first stage of my research, I analyzed regulatory sequences in an ETn LTR responsible for its high promoter activity in the undifferentiated cell line P19. I found that three GC-boxes that may function as Sp1/Sp3 binding sites act synergistically and are indispensable for undifferentiated cell-specific promoter activity of the LTR. Sp1 binding partners may be responsible for the restricted ETn expression. Moreover, I have shown that unlike many retroviruses, ETn elements possess multiple transcription initiation sites and that they have amplified via intracellular retrotransposition in the P19 teratocarcinoma cell line.

In the next step of my research, I performed analysis of epigenetic mechanisms as a means of ERV suppression. Specifically, I showed that in embryonic stem cells, autonomous MusD retrotransposons are epigenetically suppressed to a greater degree than non-autonomous ETn retrotransposons, illustrated by a higher level of DNA methylation and a lower level of active histone modifications. I hypothesize that MusD elements may be silenced by DNA methylation and repressive chromatin spreading into the LTR from the CpG-rich internal retroviral sequence absent in ETn elements.

I propose that internal structure largely devoid of high CG content enables ETn elements to evade host-imposed transcriptional repression, contributing to their high mutagenic activity in the mouse germline.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:BVAU.2429/1160
Date11 1900
CreatorsMaksakova, Irina Arielevna
PublisherUniversity of British Columbia
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation

Page generated in 0.002 seconds