Return to search

Area of Interest Identification Using Circle Hough Transform and Outlier Removal for ELISpot and FluoroSpot Images

The aim of this project is to design an algorithm that identifies the Area of Interest (AOI) in ELISpot and FluoroSpot images. ELISpot and FluoroSpot are two varieties of a biochemical test used to analyze immune responses by quantifying the amount of cytokine secreted by cells. ELISpot and FluoroSpot images show a well that contains the cytokinesecreting cells which appear as scattered spots. Prior to counting the number of spots, it is required to detect the area in which to count the spots, i.e. the area delimited by the contour of the well. We propose to use the Circle Hough Transform together with filtering and the Laplacian of Gaussian edge detector in order to accurately detect such area. Furthermore we develop an outlier removal method that contributes to increase the robustness of the proposed detection method. Finally we compare our algorithm with another algorithm already in use. A Swedish biotech company called Mabtech has implemented an AOI identifier in the same field. Our proposed algorithm proves to be more robust and provides consistent results for all the images in the dataset.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-254256
Date January 2019
CreatorsJiménez Tauste, Albert, Rydberg, Niklas
PublisherKTH, Skolan för elektroteknik och datavetenskap (EECS)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-EECS-EX ; 2019:140

Page generated in 0.0017 seconds