La microscopie à force atomique (AFM) permet de visualiser la topographie d’échantillons organiqueset inorganiques à l’échelle atomique. Les innovations les plus récentes offrent désormais la possibilitéd’accéder aux propriétés nano-mécaniques des échantillons (élasticité, adhésion…). Son panel defonctionnalités permet de pallier aux besoins des nanotechnologies, tant dans les domaines de laphysique, de la chimie que de la biologie.Cependant, les besoins nécessaires à la compréhension des processus biologiques imposent aumicroscope à force atomique des vitesses d’acquisitions rapides, inférieures à la seconde par image. Leséquipements classiques n’offrent pas cette possibilité. C’est pour s’affranchir de ce verrou technologique,pour l’étude dynamique, qu’un prototype de microscope à force atomique à haute-vitesse a étédéveloppé (HS-AFM) en partenariat avec l’équipe du Professeur T. Ando à l’Université de Kanazawa(Japon). Il permet d’atteindre des vitesses de balayage identiques aux vitesses vidéos : 25-50 images/s, enmilieu liquide. Le dispositif est en perpétuelle amélioration : nouvelle boucle d’asservissement, domainesde balayage augmentés. La haute résolution est, quant à elle, assurée par des leviers miniaturisés munisde sur-pointes en carbone. Parallèlement à l’innovation du microscope en lui-même, des modulescomplémentaires ont été développés : module pousse seringue et module chauffant.Le potentiel de ce prototype, développé dans le cadre d’un programme ANR PNANO 2008 HSnanobio-Imaging, a été montré via l’étude d’une petite protéine de choc thermique : la protéine sHspLo18. Cette protéine, issue de la bactérie lactique Oenococcus oeni, offrait la possibilité d’étudier deschangements de degrés d’oligomérisation en fonction du pH, ainsi que le rôle chaperon et lipochaperonen cas de stress environnemental d’autres complexes biologiques. L’utilisation des techniques demicroscopie couplée à des études biochimiques sur ce modèle protéique a permis d’appréhender l’effetdes surfaces sur l’adsorption et la dynamique des complexes biologiques. L’interaction protéine – surfacea pu être approchée et s’avère utile au développement des capteurs à protéines / The atomic force microscopy (AFM) gives access to the topography of organic and inorganic samplesat the atomic scale. The latest innovations offer the possiblity to understand the sample nano-mechanicalproperties (elasticity, adhesion...). Its feature set allows overcoming the demands of nanotechnology,both in the fields of physics, chemistry and biology.However, understanding biological processes require faster acquisitions for the atomic forcemicroscopy, less than a second per frame. As conventional equipment does not offer the possibility toovercome the constraint of time for dynamical studies, a prototype of high-speed atomic forcemicroscope (HS-AFM) was developed in partnership with Professor T. Ando group of Kanazawa University(Japan). It can reach scanning video speed: 25-50 frames/s in a liquid medium. The device is beingconstantly improved: new feedback control, larger scanning sizes. The resolution is provided byminiaturized cantilevers with carbon EBD-tips. In parallel to innovative modules on the microscope, addonshave been developed: syringe pump and heating modules.The potential of the prototype, developed within the framework of the program ANR PNANO 2008HS-nanobio-Imaging, has been shown through the study of a small heat shock protein: the protein sHspLo18. This protein, from the lactic acid bacterium Oenococcus oeni, offered the possibility of a variouschanges of oligomerization degrees according to the pH, and also the chaperone and lipochaperon activityof protein under the influence of an environmental stress. The use of these techniques of microscopiescoupled with biochemical studies on this proteic model allowed to dread the effect of surfaces on theadsorption and the dynamics of biological complexes. The interaction protein – surface coulb be toapprehend and proves to be useful for the development of protein sensors developed in the laboratory
Identifer | oai:union.ndltd.org:theses.fr/2012DIJOS082 |
Date | 13 December 2012 |
Creators | Carriou, David |
Contributors | Dijon, Lesniewska, Eric, Bourillot, Eric |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0024 seconds