Return to search

Calibration of High Dimensional Compressive Sensing Systems: A Case Study in Compressive Hyperspectral Imaging

ITC/USA 2013 Conference Proceedings / The Forty-Ninth Annual International Telemetering Conference and Technical Exhibition / October 21-24, 2013 / Bally's Hotel & Convention Center, Las Vegas, NV / Compressive Sensing (CS) is a set of techniques that can faithfully acquire a signal from sub- Nyquist measurements, provided the class of signals have certain broadly-applicable properties. Reconstruction (or exploitation) of the signal from these sub-Nyquist measurements requires a forward model - knowledge of how the system maps signals to measurements. In high-dimensional CS systems, determination of this forward model via direct measurement of the system response to the complete set of impulse functions is impractical. In this paper, we will discuss the development of a parameterized forward model for the Adaptive, Feature-Specific Spectral Imaging Classifier (AFSSI-C), an experimental compressive spectral image classifier. This parameterized forward model drastically reduces the number of calibration measurements.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/579668
Date10 1900
CreatorsPoon, Phillip, Dunlop, Matthew
ContributorsGehm, Michael, University of Arizona
PublisherInternational Foundation for Telemetering
Source SetsUniversity of Arizona
Languageen_US
Detected LanguageEnglish
Typetext, Proceedings
RightsCopyright © held by the author; distribution rights International Foundation for Telemetering
Relationhttp://www.telemetry.org/

Page generated in 0.0023 seconds