Return to search

Post-Main Sequence Habitability for Outer Solar System Moons / Habitability in the future Outer Solar System

The search for extra-terrestrial life is guided by the classification of promising candidate worlds. In this classification the habitable zone acts as a measure for the perceived habitability of a circumstellar body. Habitable zone definitions vary between using a conservative and an optimistic limit. As the Sun progresses through stages of stellar evolution previously uninhabitable outer moons may receive sufficient heating for the existence of liquid water on their surface. To evaluate the possibility for life on these moons the time inside the habitable zone is calculated and compared to estimates for the time for life to develop on Earth. For these calculations the stellar evolution models of PARSEC and Dartmouth are employed. A class of moons is discovered whose time inside the habitable zone is longest during the horizontal branch evolutionary phase (fueled by helium burning in the core). Since the horizontal branch luminosity is near constant, this class is of particular interest due to being less dependent on a stabilizing climate mechanism to regulate atmospheric composition needed to counteract luminosity changes. Ultimately, it is found that regardless of moon, stellar evolution model, and habitable zone definition no post-main sequence time inside the habitable zone is as long as the time for life to arise on Earth. / <p>Research presentation</p>

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-477353
Date January 2022
CreatorsSparrman, Viktor
PublisherUppsala universitet, Institutionen för fysik och astronomi
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationFYSAST ; FYSMAS1177

Page generated in 0.0023 seconds