À l'horizon 2050, environ un tiers de notre population sera âgée de soixante-cinq ans et plus. Les travaux de l'équipe AFIRM du TIMC-IMAG visent à surveiller les personnes âgées à domicile pour détecter une perte d'autonomie le plus précocement possible. Pour ce faire, les travaux de cette thèse tentent d'objectiver les critères ADL ou les grilles de type AGGIR, en classifiant de manière automatique les différentes activités de la vie quotidienne d'une personne par l'intégration de capteurs, créant un Habitat Intelligent pour la Santé (HIS).<br />L'appartement HIS possède des détecteurs de présence infrarouges (localisation), des contacteurs de porte (utilisation de certaines commodités), un capteur de température et d'hygrométrie dans la salle de bains et des microphones (classification des sons/ reconnaissance de la parole avec l'équipe GETALP du LIG). Un capteur cinématique embarqué détecte les transferts posturaux (reconnaissance de formes avec la transformée en ondelettes) et les périodes de marche (analyse fréquentielle).<br />La première partie de ce manuscrit présente la réalisation du capteur cinématique et les algorithmes associés puis une première validation sur des sujets jeunes suivi de la mise en place et de la validation des autres capteurs de l'appartement HIS et enfin l'algorithme de classification des sept activités de la vie quotidienne reconnues (hygiène, élimination, préparation et prise de repas, repos, habillage/déshabillage, détente et communication), par l'intermédiaire des séparateurs à vaste marge. La seconde partie décrit le protocole expérimental pour valider cette classification et discute de la généralisation des premiers résultats présentés.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00336400 |
Date | 24 October 2008 |
Creators | Fleury, Anthony |
Source Sets | CCSD theses-EN-ligne, France |
Language | fra |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0022 seconds