Return to search

Représentation probabiliste d'équations HJB pour le contrôle optimal de processus à sauts, EDSR (équations différentielles stochastiques rétrogrades) et calcul stochastique. / Probabilistic representation of HJB equations foroptimal control of jumps processes, BSDEs and related stochastic calculus

Dans le présent document on aborde trois divers thèmes liés au contrôle et au calcul stochastiques, qui s'appuient sur la notion d'équation différentielle stochastique rétrograde (EDSR) dirigée par une mesure aléatoire. Les trois premiers chapitres de la thèse traitent des problèmes de contrôle optimal pour différentes catégories de processus markoviens non-diffusifs, à horizon fini ou infini. Dans chaque cas, la fonction valeur, qui est l'unique solution d'une équation intégro-différentielle de Hamilton-Jacobi-Bellman (HJB), est représentée comme l'unique solution d'une EDSR appropriée. Dans le premier chapitre, nous contrôlons une classe de processus semi-markoviens à horizon fini; le deuxième chapitre est consacré au contrôle optimal de processus markoviens de saut pur, tandis qu'au troisième chapitre, nous examinons le cas de processus markoviens déterministes par morceaux (PDMPs) à horizon infini. Dans les deuxième et troisième chapitres les équations d'HJB associées au contrôle optimal sont complètement non-linéaires. Cette situation survient lorsque les lois des processus contrôlés ne sont pas absolument continues par rapport à la loi d'un processus donné. Etant donné ce caractère complètement non-linéaire, ces équations ne peuvent pas être représentées par des EDSRs classiques. Dans ce cadre, nous avons obtenu des formules de Feynman-Kac non-linéaires en généralisant la méthode de la randomisation du contrôle introduite par Kharroubi et Pham (2015) pour les diffusions. Ces techniques nous permettent de relier la fonction valeur du problème de contrôle à une EDSR dirigée par une mesure aléatoire, dont une composante de la solution subit une contrainte de signe. En plus, on démontre que la fonction valeur du problème de contrôle originel non dominé coïncide avec la fonction valeur d'un problème de contrôle dominé auxiliaire, exprimé en termes de changements de mesures équivalentes de probabilité. Dans le quatrième chapitre, nous étudions une équation différentielle stochastique rétrograde à horizon fini, dirigée par une mesure aléatoire à valeurs entières sur $R_+ times E$, o`u $E$ est un espace lusinien, avec compensateur de la forme $nu(dt, dx) = dA_t phi_t(dx)$. Le générateur de cette équation satisfait une condition de Lipschitz uniforme par rapport aux inconnues. Dans la littérature, l'existence et unicité pour des EDSRs dans ce cadre ont été établies seulement lorsque $A$ est continu ou déterministe. Nous fournissons un théorème d'existence et d'unicité même lorsque $A$ est un processus prévisible, non décroissant, continu à droite. Ce résultat s’applique par exemple, au cas du contrôle lié aux PDMPs. En effet, quand $mu$ est la mesure de saut d'un PDMP sur un domaine borné, $A$ est prévisible et discontinu. Enfin, dans les deux derniers chapitres de la thèse nous traitons le calcul stochastique pour des processus discontinus généraux. Dans le cinquième chapitre, nous développons le calcul stochastique via régularisations des processus à sauts qui ne sont pas nécessairement des semimartingales. En particulier nous poursuivons l'étude des processus dénommés de Dirichlet faibles, dans le cadre discontinu. Un tel processus $X$ est la somme d'une martingale locale et d'un processus adapté $A$ tel que $[N, A] = 0$, pour toute martingale locale continue $N$. Pour une fonction $u: [0, T] times R rightarrow R$ de classe $C^{0,1}$ (ou parfois moins), on exprime un développement de $u(t, X_t)$, dans l'esprit d'une généralisation du lemme d'Itô, lequel vaut lorsque $u$ est de classe $C^{1,2}$. Le calcul est appliqué dans le sixième chapitre à la théorie des EDSRs dirigées par des mesures aléatoires. Dans de nombreuses situations, lorsque le processus sous-jacent $X$ est une semimartingale spéciale, ou plus généralement, un processus de Dirichlet spécial faible, nous identifions les solutions des EDSRs considérées via le processus $X$ et la solution $u$ d’une EDP intégro-différentielle associée. / In the present document we treat three different topics related to stochastic optimal control and stochastic calculus, pivoting on thenotion of backward stochastic differential equation (BSDE) driven by a random measure.After a general introduction, the three first chapters of the thesis deal with optimal control for different classes of non-diffusiveMarkov processes, in finite or infinite horizon. In each case, the value function, which is the unique solution to anintegro-differential Hamilton-Jacobi-Bellman (HJB) equation, is probabilistically represented as the unique solution of asuitable BSDE. In the first chapter we control a class of semi-Markov processes on finite horizon; the second chapter isdevoted to the optimal control of pure jump Markov processes, while in the third chapter we consider the case of controlled piecewisedeterministic Markov processes (PDMPs) on infinite horizon. In the second and third chapters the HJB equations associatedto the optimal control problems are fully nonlinear. Those situations arise when the laws of the controlled processes arenot absolutely continuous with respect to the law of a given, uncontrolled, process. Since the corresponding HJB equationsare fully nonlinear, they cannot be represented by classical BSDEs. In these cases we have obtained nonlinear Feynman-Kacrepresentation formulae by generalizing the control randomization method introduced in Kharroubi and Pham (2015)for classical diffusions. This approach allows us to relate the value function with a BSDE driven by a random measure,whose solution hasa sign constraint on one of its components.Moreover, the value function of the original non-dominated control problem turns out to coincide withthe value function of an auxiliary dominated control problem, expressed in terms of equivalent changes of probability measures.In the fourth chapter we study a backward stochastic differential equation on finite horizon driven by an integer-valued randommeasure $mu$ on $R_+times E$, where $E$ is a Lusin space, with compensator $nu(dt,dx)=dA_t,phi_t(dx)$. The generator of thisequation satisfies a uniform Lipschitz condition with respect to the unknown processes.In the literature, well-posedness results for BSDEs in this general setting have only been established when$A$ is continuous or deterministic. We provide an existence and uniqueness theorem for the general case, i.e.when $A$ is a right-continuous nondecreasing predictable process. Those results are relevant, for example,in the frameworkof control problems related to PDMPs. Indeed, when $mu$ is the jump measure of a PDMP on a bounded domain, then $A$ is predictable and discontinuous.Finally, in the two last chapters of the thesis we deal with stochastic calculus for general discontinuous processes.In the fifth chapter we systematically develop stochastic calculus via regularization in the case of jump processes,and we carry on the investigations of the so-called weak Dirichlet processes in the discontinuous case.Such a process $X$ is the sum of a local martingale and an adapted process $A$ such that $[N,A] = 0$, for any continuouslocal martingale $N$.Given a function $u:[0,T] times R rightarrow R$, which is of class $C^{0,1}$ (or sometimes less), we provide a chain rule typeexpansion for $u(t,X_t)$, which constitutes a generalization of It^o's lemma being valid when $u$ is of class $C^{1,2}$.This calculus is applied in the sixth chapter to the theory of BSDEs driven by random measures.In several situations, when the underlying forward process $X$ is a special semimartingale, or, even more generally,a special weak Dirichlet process,we identify the solutions $(Y,Z,U)$ of the considered BSDEs via the process $X$ and the solution $u$ to an associatedintegro PDE.

Identiferoai:union.ndltd.org:theses.fr/2016SACLY005
Date07 April 2016
CreatorsBandini, Elena
ContributorsUniversité Paris-Saclay (ComUE), Politecnico di Milano. Dipartimento di mathematica (Milano, Italie), Fuhrman, Marco
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0157 seconds