Esta dissertação aborda a teoria dos jogos diferenciais em sua estreita relação com a teoria das equações de Hamilton-Jacobi (HJ). Inicialmente, uma revisão da noção de solução em teoria dos jogos é empreendida. Discutem-se nesta ocasião as idéias de equilíbrio de Nash e alguns de seus refinamentos. Em seguida, tem lugar uma introdução à teoria dos jogos diferenciais, onde noções de solução como a função de valor de Isaacs e de Friedman são discutidas. É nesta altura do trabalho que fica evidente a conexão entre este conceito de solução e a teoria das equações de Hamilton-Jacobi. Por ocasião desta conexão, é explorada a noção de solução clássica e é exposta uma demonstração do fato de que se um jogo diferencial possuir uma função de valor pelo menos continuamente diferenciável, esta será uma solução da equação de Hamilton-Jacobi associada ao jogo. Este resultado faz uso do princípio da programação dinâmica, devido a Bellman, e cuja demonstração está presente no texto. No entanto, quando a função de valor do jogo é apenas contínua, então embora esta não seja uma solução clássica da equação HJ associada a jogo, vemos que ela será uma solução viscosa, ou solução no sentido da viscosidade - e a esta altura são discutidos os elementos e propriedades desta classe de soluções, um teorema de existência e unicidade e alguns exemplos. Por fim, retomamos o estudo dos jogos diferenciais à luz das soluções viscosas da equação de Hamilton-Jacobi e, assim, expomos uma demonstração de existência da função de valor e do princípio da programação dinâmica a partir das noções da viscosidade / This dissertation aims to address the topic of Differential Game Theory in its connection with the Hamilton-Jacobi (HJ) equations framework. Firstly we introduce the idea of solution for a game, through the discussion of Nash equilibria and its refinements. Secondly, the solution concept is then translated to the context of Differential Games and the idea of value function is introduced in its Isaacs\'s as well as Friedman\'s version. As the value function is discussed, its relationship with the Hamilton-Jacobi equations theory becomes self-evident. Due to such relation, we investigate the HJ equation from two distinct points of view. First of all, we discuss a statement according to which if a differential game has a continuously differentiable value function, then such function is a classical solution of the HJ equation associated to the game. This result strongly relies on Bellman\'s Dynamic Programming Principle - and this is the reason why we devote an entire chapter to this theme. Furthermore, HJ is still at our sight from the PDE point of view. Our motivation is simple: under some lack of regularity - a value function which is continuous, but not continuously differentiable - a game may still have a value function represented as a solution of the associated HJ equation. In this case such a solution will be called a solution in the viscosity sense. We then discuss the properties of viscosity solutions as well as provide an existence and uniqueness theorem. Finally we turn our attention back to the theory of games and - through the notion of viscosity - establish the existence and uniqueness of value functions for a differential game within viscosity solution theory.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-31082010-091851 |
Date | 16 August 2010 |
Creators | Pimentel, Edgard Almeida |
Contributors | Tonelli, Pedro Aladar |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0019 seconds