Return to search

Sistemas Integráveis

Made available in DSpace on 2014-06-12T18:31:58Z (GMT). No. of bitstreams: 2
arquivo8529_1.pdf: 505519 bytes, checksum: f91a61d515cd623c26a255c91e65d84c (MD5)
license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5)
Previous issue date: 2003 / O principal objetivo deste trabalho e apresentar a teoria dos Sistemas Hamiltonianos Integráveis e aplicá-lo ao estudo de dois problemas básicos que servem como introdução à literatura geral. São eles, o fluxo geodésico no elipsóide e o problema mecânico de Neumann. Alem disso, veremos que H.Knöer, usando a aplicação de Gauss do elipsóide na esfera unitária, mostrou que existe uma equivalência entre os dois problemas mecânicos. Usamos como principais referencias os textos [1], [2], [6], [7] e [8]. A tese e organizada da seguinte forma: No capítulo 1 apresentaremos alguns conceitos básicos de mecânica hamiltoniana e lagrangeana sobre uma variedade e mostraremos a correspondência que existe entre sistemas mecânicos hamiltonianos e lagrangeanos. A seguir estudaremos um pouco de princípio variacional e da teoria clássica dos sistemas hamiltonianos integráveis através do estudo das funções geradoras e da teoria de Hamilton- Jacobi. No capítulo 2, estudaremos um pouco da teoria dos grupos de Lie que são de suma importância no estudo de sistemas hamiltonianos com simetria e apresentaremos uma maneira de construir integrais de movimento para um sistema hamiltoniano através da aplicacao momento. No capítulo 3, daremos algumas definições básicas sobre a teoria geométrica dos sistemas hamiltonianos integráveis e demonstraremos um dos resultados mais importantes dessa teoria, o teorema de Arnold-Liouville que caracteriza o espaço de fases de um sistema integrável. No capítulo 4, aplicamos a teoria dos sistemas hamiltonianos integráveis ao estudo do fluxo geodésico no elipsóide e do problema mecânico de Neumann

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.ufpe.br:123456789/7394
Date January 2003
CreatorsOLIVEIRA, Adriano Veiga de
ContributorsCASTILHO, César Augusto Rodrigues
PublisherUniversidade Federal de Pernambuco
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Repositório Institucional da UFPE, instname:Universidade Federal de Pernambuco, instacron:UFPE
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.002 seconds