Virtual environment (VE) technology offers a viable training option for developing knowledge, skills and attitudes (KSA) within domains that have limited live training opportunities due to personnel safety and cost (e.g., live fire exercises). However, to ensure these VE training systems provide effective training and transfer, designers of such systems must ensure that training goals and objectives are clearly defined and VEs are designed to support development of KSAs required. Perhaps the greatest benefit of VE training is its ability to provide a multimodal training experience, where trainees can see, hear and feel their surrounding environment, thus engaging them in training scenarios to further their expertise. This work focused on enhancing situation awareness (SA) within a training VE through appropriate use of multimodal cues. The Multimodal Optimization of Situation Awareness (MOSA) model was developed to identify theoretical benefits of various environmental and individual multimodal cues on SA components. Specific focus was on benefits associated with adding cues that activated the haptic system (i.e., kinesthetic/cutaneous sensory systems) or vestibular system in a VE. An empirical study was completed to evaluate the effectiveness of adding two independent spatialized tactile cues to a Military Operations on Urbanized Terrain (MOUT) VE training system, and how head tracking (i.e., addition of rotational vestibular cues) impacted spatial awareness and performance when tactile cues were added during training. Results showed tactile cues enhanced spatial awareness and performance during both repeated training and within a transfer environment, yet there were costs associated with including two cues together during training, as each cue focused attention on a different aspect of the global task. In addition, the results suggest that spatial awareness benefits from a single point indicator (i.e., spatialized tactile cues) may be impacted by interaction mode, as performance benefits were seen when tactile cues were paired with head tracking. Future research should further examine theoretical benefits outlined in the MOSA model, and further validate that benefits can be realized through appropriate activation of multimodal cues for targeted training objectives during training, near transfer and far transfer (i.e., real world performance).
Identifer | oai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd-2064 |
Date | 01 January 2006 |
Creators | Hale, Kelly |
Publisher | STARS |
Source Sets | University of Central Florida |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Electronic Theses and Dissertations |
Page generated in 0.0023 seconds