Return to search

Optimizing Harris Corner Detection on GPGPUs Using CUDA

ABSTRACT
Optimizing Harris Corner Detection on GPGPUs Using CUDA
The objective of this thesis is to optimize the Harris corner detection algorithm implementation on NVIDIA GPGPUs using the CUDA software platform and measure the performance benefit. The Harris corner detection algorithm—developed by C. Harris and M. Stephens—discovers well defined corner points within an image. The corner detection implementation has been proven to be computationally intensive, thus realtime performance is difficult with a sequential software implementation. This thesis decomposes the Harris corner detection algorithm into a set of parallel stages, each of which are implemented and optimized on the CUDA platform. The performance results show that by applying strategic CUDA optimizations to the Harris corner detection implementation, realtime performance is feasible. The optimized CUDA implementation of the Harris corner detection algorithm showed significant speedup over several platforms: standard C, MATLAB, and OpenCV. The optimized CUDA implementation of the Harris corner detection algorithm was then applied to a feature matching computer vision system, which showed significant speedup over the other platforms.

Identiferoai:union.ndltd.org:CALPOLY/oai:digitalcommons.calpoly.edu:theses-2473
Date01 March 2015
CreatorsLoundagin, Justin
PublisherDigitalCommons@CalPoly
Source SetsCalifornia Polytechnic State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMaster's Theses

Page generated in 0.0021 seconds