Return to search

Collagen scaffolds for treatment of penetrating brain injury in a rat model

Thesis (Ph. D.)--Harvard-MIT Division of Health Sciences and Technology, 2011. / Cataloged from PDF version of thesis. / Includes bibliographical references (p. 192-204). / Recovery from central nervous system (CNS) injuries is hindered by a lack of spontaneous regeneration. In injuries such as stroke and traumatic brain injury, loss of viable tissue can lead to cavitation as necrotic debris is cleared. Using a rat model of penetrating brain injury, this thesis investigated the use of collagen biomaterials to fill a cavitary brain defect and deliver therapeutic agents. Characterization of the untreated injury revealed lesion volume expansion of 29% between weeks 1 and 5 post-injury. The cavity occupied parts of the striatum and cortex in the left hemisphere, and was surrounded by glial scarring. Implantation of a collagen scaffold one week after injury resulted in a modest cellular infiltrate four weeks later consisting of macrophages, astrocytes, and endothelial cells. The scaffold was able to fill the cavity and provide a substrate for cellular migration into the defect. Incorporation of a Nogo receptor molecule aimed at binding inhibitory myelin proteins did not appear to promote axonal regeneration, but resulted in increased infiltration of macrophages and endothelial cells. The increased vascularization observed within the scaffolds represents a modified environment that might be more suitable for regenerative therapies. A scaffold was also used to investigate the delivery of neural progenitor cells one week after injury. After four weeks, viable implanted cells were found to have differentiated into astrocytes, oligodendrocytes, endothelial cells, neurons, and possibly macrophages/microglia. These results demonstrate the potential utility of combinatorial therapies involving collagen biomaterials, myelin protein antagonists, and neural progenitors for treatment of CNS injuries. / by Paul Ziad Elias. / Ph.D.

Identiferoai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/63081
Date January 2011
CreatorsElias, Paul Z. (Paul Ziad)
ContributorsMyron Spector., Harvard University--MIT Division of Health Sciences and Technology., Harvard University--MIT Division of Health Sciences and Technology.
PublisherMassachusetts Institute of Technology
Source SetsM.I.T. Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Format204 p., application/pdf
RightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission., http://dspace.mit.edu/handle/1721.1/7582

Page generated in 0.0101 seconds