Return to search

High-throughput methods for characterizing the immune repertoire

Thesis (Ph. D. in Biomedical Engineering and Computational Biology)--Harvard-MIT Program in Health Sciences and Technology, February 2013. / "September 2012." Cataloged from PDF version of thesis. / Includes bibliographical references (p. 147-160). / The adaptive immune system is one of the primary mediators in almost every major human disease, including infections, cancer, autoimmunity, and inflammation-based disorders. It fundamentally functions as a molecular classifier, and stores a memory of its previous exposures. However, until recently, methods to unlock this information or to exploit its power in the form of new therapeutic antibodies or affinity reagents have been limited by the use of traditional, low-throughput technologies. In this thesis, we leverage recent advances in high-throughput DNA sequencing technology to develop new methods to characterize and probe the immune repertoire in unprecedented detail. We use this technology to 1) characterize the rapid dynamics of the immune repertoire in response to influenza vaccination, 2) characterize elite neutralizing antibodies to HIV, to better understand the constraints for designing an HIV vaccine, and 3) develop new methodologies for discovering auto-antigens, and assaying large libraries of protein antigens in general. We hope that these projects will serve as stepping-stones towards filling the gap left by low-throughput methods in the development of antibody technologies. / by Uri Laserson. / Ph.D.in Biomedical Engineering and Computational Biology

Identiferoai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/79246
Date January 2013
CreatorsLaserson, Uri
ContributorsGeorge M Church., Harvard--MIT Program in Health Sciences and Technology., Harvard--MIT Program in Health Sciences and Technology.
PublisherMassachusetts Institute of Technology
Source SetsM.I.T. Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Format160 p., application/pdf
RightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission., http://dspace.mit.edu/handle/1721.1/7582

Page generated in 0.0022 seconds