Return to search

Cerebral white matter analysis using diffusion imaging

Thesis (Ph. D.)--Harvard-MIT Division of Health Sciences and Technology, 2006. / Includes bibliographical references (p. 183-198). / In this thesis we address the whole-brain tractography segmentation problem. Diffusion magnetic resonance imaging can be used to create a representation of white matter tracts in the brain via a process called tractography. Whole brain tractography outputs thousands of trajectories that each approximate a white matter fiber pathway. Our method performs automatic organization, or segmention, of these trajectories into anatomical regions and gives automatic region correspondence across subjects. Our method enables both the automatic group comparison of white matter anatomy and of its regional diffusion properties, and the creation of consistent white matter visualizations across subjects. We learn a model of common white matter structures by analyzing many registered tractography datasets simultaneously. Each trajectory is represented as a point in a high-dimensional spectral embedding space, and common structures are found by clustering in this space. By annotating the clusters with anatomical labels, we create a model that we call a high-dimensional white matter atlas. / (cont.) Our atlas creation method discovers structures corresponding to expected white matter anatomy, such as the corpus callosum, uncinate fasciculus, cingulum bundles, arcuate fasciculus, etc. We show how to extend the spectral clustering solution, stored in the atlas, using the Nystrom method to perform automatic segmentation of tractography from novel subjects. This automatic tractography segmentation gives an automatic region correspondence across subjects when all subjects are labeled using the atlas. We show the resulting automatic region correspondences, demonstrate that our clustering method is reproducible, and show that the automatically segmented regions can be used for robust measurement of fractional anisotropy. / by Lauren Jean O'Donnell. / Ph.D.

Identiferoai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/35514
Date January 2006
CreatorsO'Donnell, Lauren Jean
ContributorsW. Eric L. Grimson and Carl-Fredrik Westin., Harvard University--MIT Division of Health Sciences and Technology., Harvard University--MIT Division of Health Sciences and Technology.
PublisherMassachusetts Institute of Technology
Source SetsM.I.T. Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Format198 p., 50254433 bytes, 50253755 bytes, application/pdf, application/pdf, application/pdf
RightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission., http://dspace.mit.edu/handle/1721.1/7582

Page generated in 0.0021 seconds