Headwater catchments play a large role in the storage and release of water and chemical constituents, thereby influencing downstream flows and water quality. Recent advances in water quality monitoring technologies have created an opportunity to better assess water chemistry variation by using high temporal resolution, in situ sensors. However, despite these new technologies, there have been limited studies on installation approaches and their effects on sensor measurements. Accurate in situ monitoring is particularly important to capture catchment disturbance effects that may be highly dynamic over time (e.g., following storms) or limited in duration. For example, prescribed fire is a commonly applied forest management tool, but there remain questions regarding how this disturbance affects catchment soils and resultant stream water chemistry. Effective assessment of prescribed fire thus requires coupled monitoring of both soil properties and water chemistry. In this thesis, I addressed two linked objectives: i) assess the effects of commonly used protective housings on in situ sensor measurements (Chapter 2) and ii) evaluate prescribed burn effects in a southwestern Virginia, USA headwater catchment (Chapter 3). In Chapter 2, I compared four different housing types (mesh, screen, holes, and open) using in situ specific conductance measurements over time and from salt tracer injections for discharge estimates. This study demonstrated substantial effects from some of the housing types evaluated, where flow resistance reduced water exchange between stream water and water in contact with the sensor. From these findings, I suggest that in situ water quality sensors should be deployed in housing types with large openings perpendicular to flow. In Chapter 3, I assessed prescribed fire effects on soil properties (particle size, aggregate stability, and chemistry), stream discharge, and fine-scale water chemistry dynamics. Findings demonstrated some significant differences following fire in soil properties (e.g., overall decrease in aggregate stability, general decreases in total carbon and nitrogen of mineral soils), water quality (e.g., increased levels of DOC, turbidity, and nitrate) and discharge (increases in stage and flow). While these changes were statistically significant, differences in parameters before and after fire were generally small. Future work should examine if these effects persist through time, and whether the minor level of disturbance observed in this study results in any negative environmental impacts. / Master of Science / Headwater catchments (where precipitation first becomes streamflow) provide important aquatic habitat and regulate downstream water flows and chemistry. Recent advances in water quality monitoring technologies have created an opportunity to better assess water chemistry variability by using high frequency, submerged water quality sensors. However, these new technologies present new, unique challenges, such as measurement errors that may be induced by different installation methodologies. Accurate measurements are particularly important to evaluate how changes in catchment conditions (e.g., soils, vegetation) impact local and downstream water quality. For example, prescribed fire is a commonly used forest management tool, but questions remain about how it affects catchment soils and headwater stream chemistry. Consequently, understanding the effects of this and other catchment disturbances requires coupled monitoring of both soil properties and water quality. In this thesis, I addressed two objectives: i) assess the effects of commonly used protective housings on water quality sensor measurements (Chapter 2) and ii) evaluate prescribed burn effects in a southwestern Virginia, USA headwater catchment (Chapter 3). In Chapter 2, I demonstrated substantial effects from some of the housings evaluated and suggest that water quality sensors should be deployed in housing types with large openings perpendicular to flow. In Chapter 3, I demonstrated some significant effects of prescribed fire on soil properties (e.g. overall decrease in soil stability, general decreases in total carbon and nitrogen of mineral soils), water quality (e.g., increased levels of dissolved organic matter, turbidity, and nitrate) and flow (increases in stream water levels and flow). While these changes were statistically significant, differences in parameters before and after fire were generally small. Future work should examine if these effects persist through time, and whether this minor level of disturbance causes any negative environmental impacts.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/91422 |
Date | 11 July 2019 |
Creators | Erwin, Elizabeth G. |
Contributors | Forest Resources and Environmental Conservation, McLaughlin, Daniel L., Stewart, Ryan D., Coates, T. Adam, Scott, Durelle T. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Thesis |
Format | ETD, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.002 seconds