Dans la gestion des systèmes de soins, la maîtrise des flux hospitaliers et l’anticipation des tensions sont des enjeux majeurs. Le but de cette thèse est de contribuer à l’étude et au développement d’un Système Collaboratif d’Aide à l’Ordonnancement et à l’Orchestration (SysCAOO) des tâches de soins à compétences multiples pour gérer les tensions dans les Services d’Urgences Pédiatriques (SUP) afin d’améliorer la qualité de prise en charge des patients. Le SysCAOO intègre une approche Workflow collaboratif pour modéliser le parcours patient afin d’identifier les dysfonctionnements et les pics d’activités du personnel médical dans le SUP. L’aspect dynamique et incertain du problème nous a conduits à adopter une alliance entre les Systèmes Multi-Agent (SMA) et les Algorithmes Evolutionnaires (AE) pour le traitement et l’ordonnancement des tâches de soins en tenant compte du niveau d’expérience des acteurs du SUP et leurs disponibilités. En cas d’aléas dans le SUP, une coalition d’agents se forme pour collaborer et négocier afin de proposer des décisions d’orchestration du Workflow et minimiser le temps d’attente des patients en cours de leur prise en charge. Les résultats expérimentaux présentés dans cette thèse justifient l’intérêt de l’alliance entre les SMA et les Métaheuristiques afin de gérer les tensions dans le SUP. Les travaux de recherche présentés dans cette thèse s’intègrent dans le cadre du projet HOST (Hôpital : Optimisation, Simulation et évitement des tensions) (http://www.agence-nationale-recherche.fr/?Projet=ANR-11-TECS-0010). / Health care systems management and the avoidance of overcrowding phenomena are major issues. The aim of this thesis is to implement a Collaborative Support System for Scheduling and Orchestration (CSSystSO) of multi-skill health care tasks in order to avoid areas bottlenecks in the Pediatric Emergency Department (PED) and improve health care quality for patients. The CSSystSO integrates a collaborative Workflow approach to model patient journey in order to identify dysfunctions and peaks of activities of medical staff in the PED. The dynamic and uncertain aspect of the problem has led us to adopt an alliance between Multi-Agent Systems (MAS) and Evolutionary Algorithms (EA) for health care tasks treatment and scheduling taking into account the level of experience of the PED actors and their availabilities. In case of perturbations in the PED, a coalition of agents is formed to collaborate and negotiate in order to provide orchestration Workflow decisions to minimize the waiting time of patients during their treatment. The experimental results presented in this thesis justify the interest of the alliance between MAS and Metaheuristics to manage overcrowding phenomena in the PED. This work belongs to the project HOST (Hôpital: Optimisation, Simulation et évitement des tensions). (http://www.agence-nationale-recherche.fr/?Projet=ANR-11-TECS-0010).
Identifer | oai:union.ndltd.org:theses.fr/2015CLF22651 |
Date | 14 December 2015 |
Creators | Ben Othman, Sara |
Contributors | Clermont-Ferrand 2, Quilliot, Alain |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0023 seconds